Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Scand J Med Sci Sports ; 25(2): 143-51, 2015 Apr.
Article in English | MEDLINE | ID: mdl-24382021

ABSTRACT

The purpose of this study was to compare the effects of 10 weeks of effort-matched short intervals (SI; n = 9) or long intervals (LI; n = 7) in cyclists. The high-intensity interval sessions (HIT) were performed twice a week interspersed with low-intensity training. There were no differences between groups at pretest. There were no differences between groups in total volume of both HIT and low-intensity training. The SI group achieved a larger relative improvement in VO(2max) than the LI group (8.7% ± 5.0% vs 2.6% ± 5.2%), respectively, P ≤ 0.05). Mean effect size (ES) of the relative improvement in all measured parameters, including performance measured as mean power output during 30-s all-out, 5-min all-out, and 40-min all-out tests revealed a moderate-to-large effect of SI training vs LI training (ES range was 0.86-1.54). These results suggest that the present SI protocol induces superior training adaptations on both the high-power region and lower power region of cyclists' power profile compared with the present LI protocol.


Subject(s)
Adaptation, Physiological/physiology , Bicycling/physiology , Physical Endurance/physiology , Adult , Exercise Test , Humans , Male , Oxygen Consumption , Time Factors
2.
Eur J Appl Physiol ; 114(9): 1875-88, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24906447

ABSTRACT

PURPOSE: To investigate the effects of strength training on abundances of irisin-related biomarkers in skeletal muscle and blood of untrained young women, and their associations with body mass composition, muscle phenotype and levels of thyroid hormones. METHODS: Eighteen untrained women performed 12 weeks of progressive whole-body heavy strength training, with measurement of strength, body composition, expression of irisin-related genes (FNDC5 and PGC1α) in two different skeletal muscles, and levels of serum-irisin and -thyroid hormones, before and after the training intervention. RESULTS: The strength training intervention did not result in changes in serum-irisin or muscle FNDC5 expression, despite considerable effects on strength, lean body mass (LBM) and skeletal muscle phenotype. Our data indicate that training affects irisin biology in a LBM-dependent manner. However, no association was found between steady-state serum-irisin or training-associated changes in serum-irisin and alterations in body composition. FNDC5 expression was higher in m.Biceps brachii than in m.Vastus lateralis, with individual expression levels being closely correlated, suggesting a systemic mode of transcriptional regulation. In pre-biopsies, FNDC5 expression was correlated with proportions of aerobic muscle fibers, a relationship that disappeared in post-biopsies. No association was found between serum-thyroid hormones and FNDC5 expression or serum-irisin. CONCLUSION: No evidence was found for an effect of strength training on irisin biology in untrained women, though indications were found for a complex interrelationship between irisin, body mass composition and muscle phenotype. FNDC5 expression was closely associated with muscle fiber composition in untrained muscle.


Subject(s)
Body Weight , Fibronectins/metabolism , Muscle, Skeletal/metabolism , Resistance Training , Adult , Female , Fibronectins/blood , Fibronectins/genetics , Humans , Muscle, Skeletal/physiology , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Phenotype , Thyroid Hormones/blood , Transcription Factors/blood , Transcription Factors/genetics , Transcription Factors/metabolism
3.
Scand J Med Sci Sports ; 24(5): e332-42, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24924099

ABSTRACT

Determination of muscle fiber composition in human skeletal muscle biopsies is often performed using immunohistochemistry, a method that tends to be both time consuming, technically challenging, and complicated by limited availability of tissue. Here, we introduce quantitative reverse transcriptase polymerase chain reaction (qRT-PCR)-based Gene-family profiling (GeneFam) of myosin heavy chain (MyHC) mRNA expression as a high-throughput, sensitive, and reliable alternative. We show that GeneFam and immunohistochemistry result in similar disclosures of alterations in muscle fiber composition in biopsies from musculus vastus lateralis and musculus biceps brachii of previously untrained young women after 12 weeks of progressive strength training. The adaptations were evident as (a) consistent increases in MyHC2A abundance; (b) consistent decreases in MyHC2X abundance; and (c) consistently stable MyHC1 abundance, and were not found using traditional reference gene-based qRT-PCR analyses. Furthermore, muscle fiber composition found using each of the two approaches was correlated with each other (r = 0.50, 0.74, and 0.78 for MyHC1, A, and X, respectively), suggesting that GeneFam may be suitable for ranking of individual muscle phenotype, particularly for MyHC2 fibers. In summary, GeneFam of MyHC mRNA resulted in reliable assessment of alterations in muscle fiber composition in skeletal muscle of previously untrained women after 12 weeks of strength training.


Subject(s)
Physical Conditioning, Human/physiology , Quadriceps Muscle/chemistry , RNA, Messenger/analysis , Resistance Training , Adult , Female , Gene Expression Profiling , Humans , Immunohistochemistry , Myosin Heavy Chains/genetics , Phenotype , Quadriceps Muscle/cytology , Real-Time Polymerase Chain Reaction , Young Adult
4.
Scand J Med Sci Sports ; 22(2): 199-206, 2012 Apr.
Article in English | MEDLINE | ID: mdl-20874858

ABSTRACT

It has been proposed that exercise capacity during whole body exercise in post-infarction congestive heart failure (CHF) patients is limited by skeletal muscle function. We therefore investigated the balance between cardiopulmonary and muscular metabolic capacity. CHF patients (n=8) and healthy subjects (HS, n=12) were included. Patients with coronary artery disease (CAD, n=8) were included as a control for medication. All subjects performed a stepwise incremental load test during bicycling (∼24 kg muscle mass), two-legged knee extensor (2-KE) exercise (∼4 kg muscle mass) and one-legged knee extensor (1-KE) exercise (∼2 kg muscle mass). Peak power and peak pulmonary oxygen uptake (VO(2peak) ) increased and muscle-specific VO(2peak) decreased with an increasing muscle mass involved in the exercise. Peak power and VO(2peak) were lower for CHF patients than HS, with values for CAD patients falling between CHF patients and HS. During bicycling, all groups utilized 24-29% of the muscle-specific VO(2peak) as measured during 1-KE exercise, with no difference between the groups. Hence, the muscle metabolic reserve capacity during whole body exercise is not different between CHF patients and HS, indicating that appropriately medicated and stable post-infarction CHF patients are not more limited by intrinsic skeletal muscle properties during whole body exercise than HS.


Subject(s)
Exercise Tolerance/physiology , Exercise/physiology , Heart Failure/metabolism , Oxygen Consumption/physiology , Quadriceps Muscle/metabolism , Aged , Case-Control Studies , Exercise Test , Heart Failure/etiology , Humans , Middle Aged , Myocardial Infarction/complications
5.
Neuroscience ; 145(2): 579-91, 2007 Mar 16.
Article in English | MEDLINE | ID: mdl-17289278

ABSTRACT

The vertebrate neuromuscular junction (NMJ) is known to be a cholinergic synapse at which acetylcholine (ACh) is released from the presynaptic terminal to act on postsynaptic nicotinic ACh receptors. There is now growing evidence that glutamate, which is the main excitatory transmitter in the CNS and at invertebrate NMJs, may have a signaling function together with ACh also at the vertebrate NMJ. In the CNS, the extracellular concentration of glutamate is kept at a subtoxic level by Na(+)-driven high-affinity glutamate transporters located in plasma membranes of astrocytes and neurons. The glutamate transporters are also pivotal for shaping glutamate receptor responses at synapses. In order to throw further light on the potential role of glutamate as a cotransmitter at the NMJ we used high-resolution immunocytochemical methods to investigate the localization of the plasma membrane glutamate transporters GLAST (glutamate aspartate transporter) and GLT (glutamate transporter 1) in rat and mice NMJ regions. Confocal laser-scanning immunocytochemistry showed that GLT is restricted to the NMJ in rat and mouse skeletal muscle. Lack of labeling signal in knock-out mice confirmed that the immunoreactivity observed at the NMJ was specific for GLT. GLAST was also localized at the NMJ in rat but not detected in mouse NMJ (while abundant in mouse brain). Post-embedding electron microscopic immunocytochemistry and quantitative analyses in rat showed that GLAST and GLT are enriched in the junctional folds of the postsynaptic membrane at the NMJ. GLT was relatively higher in the slow-twitch muscle soleus than in the fast-twitch muscle extensor digitorum longus, whereas GLAST was relatively higher in extensor digitorum longus than in soleus. The findings show--together with previous demonstration of vesicular glutamate, a vesicular glutamate transporter and glutamate receptors--that mammalian NMJs contain the machinery required for synaptic release and action of glutamate. This indicates a signaling role for glutamate at the normal NMJ and provides a basis for the ability of denervated muscle to be reinnervated by glutamatergic axons from the CNS.


Subject(s)
Excitatory Amino Acid Transporter 1/metabolism , Excitatory Amino Acid Transporter 2/metabolism , Glutamic Acid/metabolism , Motor Neurons/metabolism , Neuromuscular Junction/metabolism , Synaptic Membranes/metabolism , Animals , Excitatory Amino Acid Transporter 1/genetics , Excitatory Amino Acid Transporter 2/genetics , Immunohistochemistry , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Microscopy, Confocal , Microscopy, Immunoelectron , Motor Neurons/ultrastructure , Muscle Fibers, Fast-Twitch/metabolism , Muscle Fibers, Fast-Twitch/ultrastructure , Muscle Fibers, Slow-Twitch/metabolism , Muscle Fibers, Slow-Twitch/ultrastructure , Muscle, Skeletal/innervation , Neuromuscular Junction/ultrastructure , Rats , Rats, Wistar , Signal Transduction/physiology , Species Specificity , Synaptic Membranes/ultrastructure , Synaptic Transmission/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...