Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 129(13): 130501, 2022 Sep 23.
Article in English | MEDLINE | ID: mdl-36206427

ABSTRACT

We present a method for achieving high fidelity state preparation and measurement (SPAM) using trapped ion hyperfine qubits with nuclear spins higher than I=1/2. The ground states of these higher nuclear spin isotopes do not afford a simple frequency-selective state preparation scheme. We circumvent this limitation by stroboscopically driving strong and weak transitions, blending fast optical pumping using dipole transitions, and narrow microwave or optical quadrupole transitions. We demonstrate this method with the I=3/2 isotope ^{137}Ba^{+} to achieve a SPAM infidelity of (9.0±1.3)×10^{-5} (-40.5±0.6 dB), facilitating the use of a wider range of ion isotopes with favorable wavelengths and masses for quantum computation.

2.
Phys Rev Lett ; 120(22): 227701, 2018 Jun 01.
Article in English | MEDLINE | ID: mdl-29906138

ABSTRACT

We demonstrate an acoustical analog of a circuit quantum electrodynamics system that leverages acoustic properties to enable strong multimode coupling in the dispersive regime while suppressing spontaneous emission to unconfined modes. Specifically, we fabricate and characterize a device that comprises a flux tunable transmon coupled to a 300 µm long surface acoustic wave resonator. For some modes, the qubit-cavity coupling reaches 6.5 MHz, exceeding the cavity loss rate (200 kHz), qubit linewidth (1.1 MHz), and the cavity free spectral range (4.8 MHz), placing the device in both the strong coupling and strong multimode regimes. With the qubit detuned from the confined modes of the cavity, we observe that the qubit linewidth strongly depends on its frequency, as expected for spontaneous emission of phonons, and we identify operating frequencies where this emission rate is suppressed.

SELECTION OF CITATIONS
SEARCH DETAIL
...