Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Endocrine ; 2024 May 27.
Article in English | MEDLINE | ID: mdl-38801599

ABSTRACT

INTRODUCTION: Micro- and macrovascular complications are common among persons with type 2 diabetes. Recently there has been growing interest to investigate the potential of circulating small non-coding RNAs (sncRNAs) as contributors to the development of diabetic complications. In this study we investigate to what extent circulating sncRNAs levels associate with prevalent diabetic kidney disease (DKD) in persons with type 2 diabetes. METHODS: Plasma sncRNAs levels were determined using small RNA-seq, allowing detection of miRNAs, snoRNAs, piRNAs, tRNA fragments, and various other sncRNA classes. We tested for differentially expressed sncRNAs in persons with type 2 diabetes, with DKD (n = 69) or without DKD (n = 405). In secondary analyses, we also tested the association with eGFR, albuminuria (UACR), and the plasma proteome. RESULTS: In total seven sncRNAs were negatively associated with prevalent DKD (all PFDR ≤ 0.05). Including one microRNA (miR-143-5p), five snoRNAs (U8, SNORD118, SNORD24, SNORD107, SNORD87) and a piRNA (piR-019825 | DQ597218). Proteomic analyses showed that the seven sncRNAs, and especially the piRNA piR-019825, were associated with plasma levels of 24 proteins of which several have known associations with kidney function including TNF sR-I (TNFRFS1A), DAN (NBL1) and cystatin C (CST3). CONCLUSION: We have identified novel small non-coding RNAs, primarily from classes other than microRNAs, that are associated with diabetic kidney disease. Our results show that the involvement of small non-coding RNAs in DKD goes beyond the already known microRNAs and also involves other classes of sncRNA, in particular snoRNAs and the piRNA piR-019825, that have never been studied before in relation to kidney function.

2.
Osteoarthritis Cartilage ; 24(8): 1423-30, 2016 08.
Article in English | MEDLINE | ID: mdl-26995110

ABSTRACT

OBJECTIVES: To compare the epigenetic landscape of 3D cell models of human primary articular chondrocytes (hPACs) and human bone-marrow derived mesenchymal stem cells (hBMSCs) and their respective autologous articular cartilage. DESIGN: Using Illumina Infinium HumanMethylation450 BeadChip arrays, the DNA methylation landscape of the different cell sources and autologous cartilage was determined. Pathway enrichment was analyzed using DAVID. RESULTS: Principal Component Analysis (PCA) of methylation data revealed separate clustering of hBMSC samples. Between hBMSCs and autologous cartilage 86,881 cytosine-phosphate-guanine dinucleotides (CpGs) (20.2%), comprising 3,034 differentially methylated regions (DMRs; Δß > 0.1; with the same direction of effect), were significantly differentially methylated. In contrast, between hPACs and autologous cartilage only 5,706 CpGs (1.33%) were differentially methylated. Of interest was the finding of the transcriptionally active, hyper-methylation of a Cartilage Intermediate Layer Protein (CILP) annotated DMR (Δß = 0.16) in PAC-cartilage, corresponding to a profound decrease in CILP expression after in vitro culturing of hPACs as compared to autologous cartilage. CONCLUSIONS: In vitro engineered neo-cartilage tissue from primary chondrocytes, hPACs, exhibits a DNA methylation landscape that is almost identical (99% similarity) to autologous cartilage, in contrast to neo-cartilage engineered from bone marrow-derived mesenchymal stem cells (MSCs). Although hBMSCs are widely used for cartilage engineering purposes the effects of these vast differences on cartilage regeneration and long term consequences of implantation, are not known. The use of hBMSCs or hPACs for future cartilage tissue regeneration purposes should therefore be investigated in more depth in future endeavors to better understand the consequences of the differential methylome on neo-cartilage.


Subject(s)
Mesenchymal Stem Cells , Cartilage, Articular , Chondrocytes , Humans , Regeneration , Tissue Engineering
SELECTION OF CITATIONS
SEARCH DETAIL
...