Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 10(1): 3710, 2020 Feb 28.
Article in English | MEDLINE | ID: mdl-32111894

ABSTRACT

Fluid states of matter can locally exhibit characteristics of the onset of crystalline order. Traditionally this has been theoretically investigated using multipoint correlation functions. However new measurement techniques now allow multiparticle configurations of cold atomic systems to be observed directly. This has led to a search for new techniques to characterize the configurations that are likely to be observed. One of these techniques is the configuration density (CD), which has been used to argue for the formation of "Pauli crystals" by non-interacting electrons in e.g. a harmonic trap. We show here that such Pauli crystals do not exist, but that other other interesting spatial structures can occur in the form of an "anti-Crystal", where the fermions preferentially avoid a lattice of positions surrounding any given fermion. Further, we show that configuration densities must be treated with great care as naive application can lead to the identification of crystalline structures which are artifacts of the method and of no physical significance. We analyze the failure of the CD and suggest methods that might be more suitable for characterizing multiparticle correlations which may signal the onset of crystalline order. In particular, we introduce neighbour counting statistics (NCS), which is the full counting statistics of the particle number in a neighborhood of a given particle. We test this on two dimensional systems with emerging triangular and square crystal structures.

2.
Phys Rev Lett ; 123(14): 140404, 2019 Oct 04.
Article in English | MEDLINE | ID: mdl-31702189

ABSTRACT

We have studied topology and dynamics of quantum vortices in spin-2 Bose-Einstein condensates. By computationally modeling controllable braiding and fusion of these vortices, we have demonstrated that certain vortices in such spinor condensates behave as non-Abelian anyons. We identify these anyons as fluxon, chargeon, and dyon quasiparticles. The pertinent anyon models are defined by the quantum double of the underlying discrete non-Abelian symmetry group of the condensate ground state order parameter.

3.
Phys Rev Lett ; 108(25): 256806, 2012 Jun 22.
Article in English | MEDLINE | ID: mdl-23004635

ABSTRACT

We devise a way to calculate the dimensions of symmetry sectors appearing in the particle entanglement spectrum (PES) and real space entanglement spectrum (RSES) of multiparticle systems from their real space wave functions. We first note that these ranks in the entanglement spectra equal the dimensions of spaces of wave functions with a number of particles fixed. This also yields equality of the multiplicities in the PES and the RSES. Our technique allows numerical calculations for much larger systems than were previously feasible. For somewhat smaller systems, we can find approximate entanglement energies as well as multiplicities. We illustrate the method with results on the RSES and PES multiplicities for integer quantum Hall states, Laughlin and Jain composite fermion states, and for the Moore-Read state at filling ν = 5/2 for system sizes up to 70 particles.

4.
Phys Rev Lett ; 108(3): 036806, 2012 Jan 20.
Article in English | MEDLINE | ID: mdl-22400774

ABSTRACT

We provide numerical evidence that a p(x)-ip(y) paired Bonderson-Slingerland (BS) non-Abelian hierarchy state is a strong candidate for the observed ν=12/5 quantum Hall plateau. We confirm the existence of a gapped incompressible ν=12/5 quantum Hall state with shift S=2 on the sphere, matching that of the BS state. The exact ground state of the Coulomb interaction at S=2 is shown to have a large overlap with the BS trial wave function. Larger overlaps are obtained with BS-type wave functions that are hierarchical descendants of general p(x)-ip(y) weakly paired states at ν=5/2. We perform a finite-size scaling analysis of the ground-state energies for ν=12/5 states at shifts corresponding to the BS (S=2) and 3-clustered Read-Rezayi (S=-2) universality classes. This analysis reveals very tight competition between these two non-Abelian topological orders.

5.
Phys Rev Lett ; 102(22): 220403, 2009 Jun 05.
Article in English | MEDLINE | ID: mdl-19658847

ABSTRACT

We investigate domain walls between topologically ordered phases in two spatial dimensions. We present a method which allows for the determination of the superselection sectors of excitations of such walls and which leads to a unified description of the kinematics of a wall and the two phases to either side of it. This incorporates a description of scattering processes at domain walls which can be applied to questions of transport through walls. In addition to the general formalism, we give representative examples including domain walls between the Abelian and non-Abelian topological phases of Kitaev's honeycomb lattice model in a magnetic field, as well as recently proposed domain walls between spin polarized and unpolarized non-Abelian fractional quantum Hall states at different filling fractions.

6.
Phys Rev Lett ; 101(24): 240404, 2008 Dec 12.
Article in English | MEDLINE | ID: mdl-19113605

ABSTRACT

The classification of loop symmetries in Kitaev's honeycomb lattice model provides a natural framework to study the Abelian topological degeneracy. We derive a perturbative low-energy effective Hamiltonian that is valid to all orders of the expansion and for all possible toroidal configurations. Using this form we demonstrate at what order the system's topological degeneracy is lifted by finite size effects and note that in the thermodynamic limit it is robust to all orders. Further, we demonstrate that the loop symmetries themselves correspond to the creation, propagation, and annihilation of fermions. We note that these fermions, made from pairs of vortices, can be moved with no additional energy cost.

7.
Phys Rev Lett ; 98(7): 070401, 2007 Feb 16.
Article in English | MEDLINE | ID: mdl-17358999

ABSTRACT

We examine interferometric measurements of the topological charge of (non-Abelian) anyons. The target's topological charge is measured from its effect on the interference of probe particles sent through the interferometer. We find that superpositions of distinct anyonic charges a and a' in the target decohere (exponentially in the number of probes particles used) when the probes have nontrivial monodromy with the charges that may be fused with a to give a'.

8.
Phys Rev Lett ; 97(1): 016401, 2006 Jul 07.
Article in English | MEDLINE | ID: mdl-16907388

ABSTRACT

We examine interferometric experiments in systems that exhibit non-Abelian braiding statistics, expressing outcomes in terms of the modular S-matrix. In particular, this result applies to fractional quantum Hall interferometry, and we give a detailed treatment of the Read-Rezayi states, providing explicit predictions for the recently observed nu = 12/5 plateau.

9.
Phys Rev Lett ; 89(18): 181601, 2002 Oct 28.
Article in English | MEDLINE | ID: mdl-12398589

ABSTRACT

Many two-dimensional physical systems have symmetries which are mathematically described by quantum groups (quasitriangular Hopf algebras). In this Letter we introduce the concept of a spontaneously broken Hopf symmetry and show that it provides an effective tool for analyzing a wide variety of phases exhibiting many distinct confinement phenomena.

SELECTION OF CITATIONS
SEARCH DETAIL
...