Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Talanta ; 156-157: 6-10, 2016 Aug 15.
Article in English | MEDLINE | ID: mdl-27260428

ABSTRACT

A two-dimensional chromatography method for analyzing phytate or other ionic targets in matrices containing high molecular weight, charged organic species is described. Prior to quantification by anion exchange chromatography, the sample matrix was prepared by size exclusion chromatography, which removed the majority of the matrix. Quantification of phytate on the AS11-HC was sensitive (0.25µM, 0.17mg/l) and reproducible (4.6% RSD) allowing this method to provide baseline separation of phytate from a manure extract within 14min. The method is simple, requiring only sample filtering, reproducible (between-run variation 5% RSD) and linear from 0.38 to 76µM (0.25-50mg/l). The method is suitable for routine determination of phytate in high organic matrices such as manure extracts.

2.
J Chromatogr Sci ; 47(7): 523-8, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19772720

ABSTRACT

This paper presents the determination of nine haloacetic acids (HAAs) in high ionic strength, treated effluent waters using an ion chromatography-electrospray ionization-tandem mass spectrometry (IC-ESI-MS-MS) method with internal standards and discussions of each of the method parameters. Data is also provided for these same samples using USEPA Method 552.2. The sample matrices contain up to 170 mg/L chloride and 243 mg/L sulfate. Matrix ions are separated from the analytes using a high capacity anion exchange analytical column and diverted to a waste stream during each analysis to avoid signal suppression and contamination of the detector. No derivatization, offline matrix elimination, or preconcentration is used. Four isotopically-labeled HAAs are used for quantification, and detection limits are in the range of 400-1000 microg/L with R(2) of at least 0.997 over two orders of magnitude for all analytes in matrix. A trichloroacetic acid (TCAA) internal standard with the label on the alpha carbon is found to be more stable than the TCAA-1-(13)C. Amounts found using IC-MS-MS are 65-130% of amounts found using Method 552.2 for all analytes in the real world treated effluent waters. Detection limits for all nine analytes in matrix are in the range of 100-700 ng/L.


Subject(s)
Acetates/analysis , Water Supply/analysis , Chromatography, Liquid/methods , Spectrometry, Mass, Electrospray Ionization/methods , Tandem Mass Spectrometry/methods , Temperature
3.
J Chromatogr A ; 1119(1-2): 120-7, 2006 Jun 30.
Article in English | MEDLINE | ID: mdl-16445931

ABSTRACT

This paper describes a new polar-embedded stationary phase that contains an internal sulfonamide functional group coupled with an ether linkage. The synthesis involves functionalization of spherical silica particles with ligands prepared in a multi-step synthesis. The resulting material contains 16.5% carbon, corresponding to a ligand coverage of 2.4mumol/m(2). Chromatographic evaluations indicates that the new stationary phase exhibits lower polarity than any other polar-embedded packings investigated, with additional features such as low silanol activity, excellent compatibility with 100% aqueous mobile phases, higher shape selectivity for polycyclic aromatic hydrocarbons, and strong affinity to nitro-containing compounds.


Subject(s)
Chromatography, High Pressure Liquid/instrumentation , Nitro Compounds/isolation & purification , Sulfonamides/chemistry , Chromatography, High Pressure Liquid/methods , Hydrogen-Ion Concentration , Hydrolysis , Sulfonamides/chemical synthesis
4.
Anal Chem ; 77(15): 4829-35, 2005 Aug 01.
Article in English | MEDLINE | ID: mdl-16053295

ABSTRACT

Perchlorate (ClO4-) competitively inhibits the uptake of iodide by the thyroid gland. Trace quantities of perchlorate are being increasingly detected in food and environmental samples. There is great concern that perchlorate contamination may be far more widespread than believed until now. Increasingly sensitive and unambiguous methods are needed for measuring perchlorate. We report here an ion chromatography-ion association-electrospray ionization-mass spectrometry (IC/IA-ESI-MS) method of substantially greater selectivity and sensitivity than other available single-stage MS approaches. A long chain dipositive cationic agent (D2+) is added postcolumn in low concentration. This ion associates with perchlorate, even in the gas phase. Perchlorate is, thus, detected as DClO4+ in the positive ion mode at an m/z value between 300 and 400 (depending on the choice of D2+). This results in much better S/N and selectivity, as compared to detecting 35ClO4- at m/z 99, where H34SO4- also responds. We show results for various dicationic agents which vary in their selectivity and affinity for ClO4-, typically being at least 1 order of magnitude more selective for ClO4- over HSO4-. For a 100-microL injected standard, limits of detection (LOD, S/N = 3) are as good as 25 ng/L on a single quadrupole mass spectrometer. Calibration for concentrations up to 100 microg/L displays an r2 value of > or =0.9993. We show applicability to various real samples. A number of the studied reagents are suitable for such applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...