Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 27(4): 4748-4757, 2019 Feb 18.
Article in English | MEDLINE | ID: mdl-30876085

ABSTRACT

Scalable and repeatable determinations of continuous wave (CW) laser-induced damage thresholds are required to develop materials for applications ranging from deformable mirrors to momentum transfer. Current standards assume sample geometries and beam conditions where CW damage thresholds are constant in linear power density, depend strongly on substrate thermal conductivity, and are insensitive to environmental conditions. In this work, the CW laser response of thin PET films with a reflective Al/MgF2 coating are experimentally assessed over a range of beam diameters and irradiances. The laser-induced damage threshold decreases with increased exposure time down to a temporally-independent irradiance, decreases with increased beam diameter to an irradiance that is independent of spot size, and depends on radiative and convective cooling. Models are used to define the minimum spot size and exposure time required to achieve such constant damage threshold irradiances for thin reflectors.

2.
Bioinspir Biomim ; 11(6): 066006, 2016 11 10.
Article in English | MEDLINE | ID: mdl-27831933

ABSTRACT

Distributed arrays of artificial hair sensors have bio-like sensing capabilities to obtain spatial and temporal surface flow information which is an important aspect of an effective fly-by-feel system. The spatiotemporal surface flow measurement enables further exploration of additional flow features such as flow stagnation, separation, and reattachment points. Due to their inherent robustness and fault tolerant capability, distributed arrays of hair sensors are well equipped to assess the aerodynamic and flow states in adverse conditions. In this paper, a local flow measurement from an array of artificial hair sensors in a wind tunnel experiment is used with a feedforward artificial neural network to predict aerodynamic parameters such as lift coefficient, moment coefficient, free-stream velocity, and angle of attack on an airfoil. We find the prediction error within 6% and 10% for lift and moment coefficients. The error for free-stream velocity and angle of attack were within 0.12 mph and 0.37 degrees. Knowledge of these parameters are key to finding the real time forces and moments which paves the way for effective control design to increase flight agility, stability, and maneuverability.


Subject(s)
Air Movements , Aviation , Biomimetic Materials , Flight, Animal/physiology , Neural Networks, Computer , Vibrissae/physiology , Animals , Calibration , Models, Biological , Vibrissae/anatomy & histology
3.
ACS Appl Mater Interfaces ; 7(50): 27624-31, 2015 Dec 23.
Article in English | MEDLINE | ID: mdl-26618850

ABSTRACT

A technique is reported for measuring and mapping the maximum internal temperature of a structural epoxy resin with high spatial resolution via the optically detected shape transformation of embedded gold nanorods (AuNRs). Spatially resolved absorption spectra of the nanocomposites are used to determine the frequencies of surface plasmon resonances. From these frequencies the AuNR aspect ratio is calculated using a new analytical approximation for the Mie-Gans scattering theory, which takes into account coincident changes in the local dielectric. Despite changes in the chemical environment, the calculated aspect ratio of the embedded nanorods is found to decrease over time to a steady-state value that depends linearly on the temperature over the range of 100-200 °C. Thus, the optical absorption can be used to determine the maximum temperature experienced at a particular location when exposure times exceed the temperature-dependent relaxation time. The usefulness of this approach is demonstrated by mapping the temperature of an internally heated structural epoxy resin with 10 µm lateral spatial resolution.

4.
Nat Mater ; 5(5): 388-93, 2006 May.
Article in English | MEDLINE | ID: mdl-16604081

ABSTRACT

Strain plays a critical role in the properties of materials. In silicon and silicon-germanium, strain provides a mechanism for control of both carrier mobility and band offsets. In materials integration, strain is typically tuned through the use of dislocations and elemental composition. We demonstrate a versatile method to control strain by fabricating membranes in which the final strain state is controlled by elastic strain sharing, that is, without the formation of defects. We grow Si/SiGe layers on a substrate from which they can be released, forming nanomembranes. X-ray-diffraction measurements confirm a final strain predicted by elasticity theory. The effectiveness of elastic strain to alter electronic properties is demonstrated by low-temperature longitudinal Hall-effect measurements on a strained-silicon quantum well before and after release. Elastic strain sharing and film transfer offer an intriguing path towards complex, multiple-layer structures in which each layer's properties are controlled elastically, without the introduction of undesirable defects.

SELECTION OF CITATIONS
SEARCH DETAIL
...