Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Ecology ; 101(12): e03192, 2020 12.
Article in English | MEDLINE | ID: mdl-32892339

ABSTRACT

Deciphering the ecological roles of plant secondary metabolites requires integrative studies that assess both the allocation patterns of compounds and their bioactivity in ecological interactions. Secondary metabolites have been primarily studied in leaves, but many are unique to fruits and can have numerous potential roles in interactions with both mutualists (seed dispersers) and antagonists (pathogens and predators). We described 10 alkenylphenol compounds from the plant species Piper sancti-felicis (Piperaceae), quantified their patterns of intraplant allocation across tissues and fruit development, and examined their ecological role in fruit interactions. We found that unripe and ripe fruit pulp had the highest concentrations and diversity of alkenylphenols, followed by flowers; leaves and seeds had only a few compounds at detectable concentrations. We observed a nonlinear pattern of alkenylphenol allocation across fruit development, increasing as flowers developed into unripe pulp then decreasing as pulp ripened. This pattern is consistent with the hypothesis that alkenylphenols function to defend fruits from pre-dispersal antagonists and are allocated based on the contribution of the tissue to the plant's fitness, but could also be explained by non-adaptive constraints. To assess the impacts of alkenylphenols in interactions with antagonists and mutualists, we performed fungal bioassays, field observations, and vertebrate feeding experiments. In fungal bioassays, we found that alkenylphenols had a negative effect on the growth of most fungal taxa. In field observations, nocturnal dispersers (bats) removed the majority of infructescences, and diurnal dispersers (birds) removed a larger proportion of unripe infructescences. In feeding experiments, bats exhibited an aversion to alkenylphenols, but birds did not. This observed behavior in bats, combined with our results showing a decrease in alkenylphenols during ripening, suggests that alkenylphenols in fruits represent a trade-off (defending against pathogens but reducing disperser preference). These results provide insight into the ecological significance of a little studied class of secondary metabolites in seed dispersal and fruit defense. More generally, documenting intraplant spatiotemporal allocation patterns in angiosperms and examining mechanisms behind these patterns with ecological experiments is likely to further our understanding of the evolutionary ecology of plant chemical traits.


Subject(s)
Fruit , Seed Dispersal , Animals , Birds , Plant Leaves , Seeds
2.
Sci Adv ; 5(2): eaau4403, 2019 02.
Article in English | MEDLINE | ID: mdl-30801010

ABSTRACT

Species interactions have long been predicted to increase in intensity toward the tropics and low elevations because of gradients in climate, productivity, or biodiversity. Despite their importance for understanding global ecological and evolutionary processes, plant-animal interaction gradients are particularly difficult to test systematically across large geographic gradients, and evidence from smaller, disparate studies is inconclusive. By systematically measuring postdispersal seed predation using 6995 standardized seed depots along 18 mountains in the Pacific cordillera, we found that seed predation increases by 17% from the Arctic to the Equator and by 17% from 4000 meters above sea level to sea level. Clines in total predation, likely driven by invertebrates, were consistent across treeline ecotones and within continuous forest and were better explained by climate seasonality than by productivity, biodiversity, or latitude. These results suggest that species interactions play predictably greater ecological and evolutionary roles in tropical, lowland, and other less seasonal ecosystems.


Subject(s)
Biodiversity , Forests , Invertebrates/physiology , Predatory Behavior/physiology , Seeds , Tropical Climate , Animals , Arctic Regions
3.
Front Plant Sci ; 9: 656, 2018.
Article in English | MEDLINE | ID: mdl-29942320

ABSTRACT

Terrestrial tri-trophic interactions account for a large part of biodiversity, with approximately 75% represented in plant-insect-parasitoid interactions. Herbivore diet breadth is an important factor mediating these tri-trophic interactions, as specialisation can influence how herbivore fitness is affected by plant traits. We investigated how phytochemistry, herbivore immunity, and herbivore diet breadth mediate plant-caterpillar-parasitoid interactions on the tropical plant genus Piper (Piperaceae) at La Selva Biological station in Costa Rica and at Yanayacu Biological Station in Ecuador. We collected larval stages of one Piper generalist species, Quadrus cerealis, (Lepidoptera: Hesperiidae) and 4 specialist species in the genus Eois (Lepidoptera: Geometridae) from 15 different species of Piper, reared them on host leaf material, and assayed phenoloxidase activity as a measure of potential larval immunity. We combined these data with parasitism and caterpillar species diet breadth calculated from a 19-year database, as well as established values of phytochemical diversity calculated for each plant species, in order to test specific hypotheses about how these variables are related. We found that phytochemical diversity was an important predictor for herbivore immunity, herbivore parasitism, and diet breadth for specialist caterpillars, but that the direction and magnitude of these relationships differed between sites. In Costa Rica, specialist herbivore immune function was negatively associated with the phytochemical diversity of the Piper host plants, and rates of parasitism decreased with higher immune function. The same was true for Ecuador with the exception that there was a positive association between immune function and phytochemical diversity. Furthermore, phytochemical diversity did not affect herbivore immunity and parasitism for the more generalised herbivore. Results also indicated that small differences in herbivore diet breadth are an important factor mediating herbivore immunity and parasitism success for Eois at both sites. These patterns contribute to a growing body of literature that demonstrate strong cascading effects of phytochemistry on higher trophic levels that are dependent on herbivore specialisation and that can vary in space and time. Investigating the interface between herbivore immunity, plant chemical defence, and parasitoids is an important facet of tri-trophic interactions that can help to explain the enormous amount of biodiversity found in the tropics.

4.
Ecology ; 98(3): 875-881, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28027583

ABSTRACT

Many host-plants exhibit genetic variation in resistance to pathogens; however, little is known about the extent to which genetic variation in pathogen resistance influences other members of the host-plant community, especially arthropods at higher trophic levels. We addressed this knowledge gap by using a common garden experiment to examine whether genotypes of Populus trichocarpa varied in resistance to a leaf-blistering pathogen, Taphrina sp., and in the density of web-building spiders, the dominant group of predatory arthropods. In addition, we examined whether variation in spider density was explained by variation in the density and size of leaf blisters caused by Taphrina. We found that P. trichocarpa genotypes exhibited strong differences in their resistance to Taphrina and that P. trichocarpa genotypes that were more susceptible to Taphrina supported more web-building spiders, the dominant group of predatory arthropods. We suspect that this result is caused by blisters increasing the availability of suitable habitat for predators, and not due to variation in herbivores because including herbivore density as a covariate did not affect our models. Our study highlights a novel pathway by which genetic variation in pathogen resistance may affect higher trophic levels in arthropod communities.


Subject(s)
Food Chain , Genetic Variation , Spiders/microbiology , Animals , Arthropods , Ecosystem , Fungi , Herbivory , Spiders/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...