Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Chem Biol ; 16(7): 801-809, 2020 07.
Article in English | MEDLINE | ID: mdl-32066968

ABSTRACT

Telomere maintenance by telomerase is essential for continuous proliferation of human cells and is vital for the survival of stem cells and 90% of cancer cells. To compensate for telomeric DNA lost during DNA replication, telomerase processively adds GGTTAG repeats to chromosome ends by copying the template region within its RNA subunit. Between repeat additions, the RNA template must be recycled. How telomerase remains associated with substrate DNA during this critical translocation step remains unknown. Using a single-molecule telomerase activity assay utilizing high-resolution optical tweezers, we demonstrate that stable substrate DNA binding at an anchor site within telomerase facilitates the processive synthesis of telomeric repeats. The product DNA synthesized by telomerase can be recaptured by the anchor site or fold into G-quadruplex structures. Our results provide detailed mechanistic insights into telomerase catalysis, a process of critical importance in aging and cancer.


Subject(s)
DNA/metabolism , G-Quadruplexes , RNA/metabolism , Telomerase/metabolism , Telomere/enzymology , Biocatalysis , DNA/genetics , DNA Replication , Gene Expression , HEK293 Cells , Humans , Optical Tweezers , RNA/genetics , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Telomerase/genetics , Telomere/ultrastructure
2.
J Phys Chem B ; 122(49): 11155-11165, 2018 12 13.
Article in English | MEDLINE | ID: mdl-30215523

ABSTRACT

Over the past two decades, one of the standard models of protein folding has been the "two-state" model, in which a protein only resides in the folded or fully unfolded states with a single pathway between them. Recent advances in spatial and temporal resolution of biophysical measurements have revealed "beyond-two-state" complexity in protein folding, even for small, single-domain proteins. In this work, we used high-resolution optical tweezers to investigate the folding/unfolding kinetics of the B1 domain of immunoglobulin-binding protein G (GB1), a well-studied model system. Experiments were performed for GB1 both in and out of equilibrium using force spectroscopy. When the force was gradually ramped, simple single-peak folding force distributions were observed, while multiple rupture peaks were seen in the unfolding force distributions, consistent with multiple force-dependent parallel unfolding pathways. Force-dependent folding and unfolding rate constants were directly determined by both force-jump and fixed-trap measurements. Monte Carlo modeling using these rate constants was in good agreement with the force ramp data. The unfolding rate constants exhibited two different behaviors at low vs high force. At high force, the unfolding rate constant increased with increasing force, as previously reported by high force, high pulling speed force ramp measurements. However, at low force, the situation reversed and the unfolding rate constant decreased with increasing force. Taken together, these data indicate that this small protein has multiple distinct pathways to the native state on the free energy landscape.


Subject(s)
Bacterial Proteins/chemistry , Protein Unfolding , Models, Molecular
SELECTION OF CITATIONS
SEARCH DETAIL
...