Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Physiol Biochem Zool ; 74(4): 576-83, 2001.
Article in English | MEDLINE | ID: mdl-11436142

ABSTRACT

In toads, angiotensin II (ANG II) induces the water absorption response (WR) during which the seat patch (pelvic+inner-thigh skin) is pressed to a wet substrate from which water flows osmotically into the animal. Since ANG II is a potent vasoconstrictor, it has the potential to redistribute blood flow. To determine the regional circulatory effects of ANG II, we used microsphere methods to measure relative changes in blood flow to several skin regions and other organs before and after ANG II administration in terrestrial toads and aquatic bullfrogs. In toads, after ANG II administration, seat patch and bladder blood flow increased by 264.2%+/-197.6% and 287.2%+/-86.7%, respectively (P<0.05), while dorsal and pectoral skin flow decreased by 48.0%+/-19.4% and 21.3%+/-25.4%, respectively (P<0.05). In bullfrogs, ANG II caused no significant changes in blood flow. Our results support our hypothesis that, in toads, ANG II increases and decreases blood flow to regions of the body associated with water gain and water loss, respectively.


Subject(s)
Bufonidae/physiology , Endopeptidases/pharmacology , Ranidae/physiology , Skin/blood supply , Animals , Blood Pressure/drug effects , Blood Pressure/physiology , Dehydration , Endopeptidases/administration & dosage , Endopeptidases/physiology , Heart Rate/drug effects , Heart Rate/physiology , Microspheres , Regional Blood Flow/drug effects , Regional Blood Flow/physiology , Skin/drug effects , Statistics, Nonparametric , Urinary Bladder/blood supply , Water Loss, Insensible/drug effects
2.
J Exp Biol ; 203(Pt 24): 3831-8, 2000 Dec.
Article in English | MEDLINE | ID: mdl-11076745

ABSTRACT

The heart beat of vertebrate embryos has been assumed to begin when convective bulk transport by blood takes over from transport by simple diffusion. To test this hypothesis, we measured eye growth, cervical flexure and rates of oxygen consumption ( V(O2)) in day 3-4 chick embryos denied cardiac output by ligation of the outflow tract and compared them with those of embryos with an intact cardiovascular system. Eye diameter, used as the index for embryonic growth, increased at a rate of approximately 4.5-5 % h(-)(1) during the observation period. There was no significant difference (P>0.1) in the rate of increase in eye diameter between control (egg opened), sham-ligated (ligature present but not tied) and ligated embryos. Similarly, the normal progression of cervical flexure was not significantly altered by ligation (P>0.1). V(O2) (ml O(2 )g(-)(1 )h(-)(1)) at 38 degrees C, measured by closed respirometry, was not significantly different (P>0.1) on day 3 in sham-ligated (14.5+/-1.9 ml O(2 )g(-)(1 )h(-)(1)) and ligated 17.6+/-1.8 ml O(2 )g(-)(1 )h(-)(1)) embryos. Similarly, on day 4, V(O2) in sham-ligated and ligated embryos was statistically the same (sham-ligated 10. 5+/-2.9 ml O(2 )g(-)(1 )h(-)(1); ligated 9.7+/-2.9 ml O(2 )g(-)(1 )h(-)(1)). Expressed as a linear function of body mass (M), V(O2) in sham-ligated embryos was described by the equation V(O2)=-0.48M+24.06 (r(2)=0.36, N=18, P<0.01), while V(O2) in ligated embryos was described by the equation V(O2)=-0.53M+23.32 (r(2)=0.38, N=16, P<0.01). The regression line describing the relationship between body mass and V(O2) for pooled sham-ligated and ligated embryos (the two populations being statistically identical) was V(O2)=-0.47M+23.24. The slope of this regression line, which was significantly different from zero (r(2)=0.30, N=34, P<0.01), was similar to slopes calculated from previous studies over the same range of body mass.Collectively, these data indicate that growth and V(O2) are not dependent upon cardiac output and the convective blood flow it generates. Thus, early chick embryos join those of the zebrafish, clawed frog and axolotl in developing a heart beat and blood flow hours or days before required for convective oxygen and nutrient transport. We speculate that angiogenesis is the most likely role for the early development of a heart beat in vertebrate embryos.


Subject(s)
Cardiac Output , Chick Embryo/physiology , Eye/growth & development , Oxygen Consumption , Animals , Body Weight , Chick Embryo/growth & development , Chick Embryo/surgery , Egg Shell/physiology , Egg Shell/surgery , Heart Rate , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL