Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Hum Neurosci ; 17: 1111645, 2023.
Article in English | MEDLINE | ID: mdl-37007675

ABSTRACT

Introduction: In brain-computer interfaces (BCI) research, recording data is time-consuming and expensive, which limits access to big datasets. This may influence the BCI system performance as machine learning methods depend strongly on the training dataset size. Important questions arise: taking into account neuronal signal characteristics (e.g., non-stationarity), can we achieve higher decoding performance with more data to train decoders? What is the perspective for further improvement with time in the case of long-term BCI studies? In this study, we investigated the impact of long-term recordings on motor imagery decoding from two main perspectives: model requirements regarding dataset size and potential for patient adaptation. Methods: We evaluated the multilinear model and two deep learning (DL) models on a long-term BCI & Tetraplegia (ClinicalTrials.gov identifier: NCT02550522) clinical trial dataset containing 43 sessions of ECoG recordings performed with a tetraplegic patient. In the experiment, a participant executed 3D virtual hand translation using motor imagery patterns. We designed multiple computational experiments in which training datasets were increased or translated to investigate the relationship between models' performance and different factors influencing recordings. Results: Our results showed that DL decoders showed similar requirements regarding the dataset size compared to the multilinear model while demonstrating higher decoding performance. Moreover, high decoding performance was obtained with relatively small datasets recorded later in the experiment, suggesting motor imagery patterns improvement and patient adaptation during the long-term experiment. Finally, we proposed UMAP embeddings and local intrinsic dimensionality as a way to visualize the data and potentially evaluate data quality. Discussion: DL-based decoding is a prospective approach in BCI which may be efficiently applied with real-life dataset size. Patient-decoder co-adaptation is an important factor to consider in long-term clinical BCI.

2.
Int J Neurosci ; 133(3): 238-247, 2023 Mar.
Article in English | MEDLINE | ID: mdl-33765903

ABSTRACT

AIM OF THE STUDY: The electrophysiological correlates of meditation states in both short and long-term meditators have been increasingly documented; however, little is known about the brain activity associated with first-time meditation experiences. The goal of this study was to investigate the electrophysiological correlates of a single guided mindfulness meditation session in subjects with no previous meditation experience. MATERIALS AND METHODS: We analyzed electroencephalogram (EEG) changes in signal power, hemispheric asymmetry, and information flow between EEG channels, in 16 healthy subjects who were new to meditation practice. RESULTS: Our results show that information flow decreases in the theta (4-8 Hz) and alpha ranges (8-13 Hz) during mindfulness meditation exercise as compared to control: a passive listening condition. These changes are accompanied by a general trend in the decrease of alpha power over the whole scalp. One possible interpretation of these results is that there is an increased level of alertness/vigilance associated with the meditation task rather than reaching the target state. CONCLUSIONS: Our study expands on the existing body of knowledge concerning neural oscillations during breathing meditation practice by showing that in participants with no previous meditation training, EEG correlates are different from the electrophysiological signatures of mindfulness meditation found in studies of more advanced practitioners.


Subject(s)
Meditation , Humans , Brain/physiology , Electroencephalography , Electrophysiological Phenomena , Attention
3.
J Neural Eng ; 19(2)2022 03 31.
Article in English | MEDLINE | ID: mdl-35287119

ABSTRACT

Objective.Motor brain-computer interfaces (BCIs) are a promising technology that may enable motor-impaired people to interact with their environment. BCIs would potentially compensate for arm and hand function loss, which is the top priority for individuals with tetraplegia. Designing real-time and accurate BCI is crucial to make such devices useful, safe, and easy to use by patients in a real-life environment. Electrocorticography (ECoG)-based BCIs emerge as a good compromise between invasiveness of the recording device and good spatial and temporal resolution of the recorded signal. However, most ECoG signal decoders used to predict continuous hand movements are linear models. These models have a limited representational capacity and may fail to capture the relationship between ECoG signal features and continuous hand movements. Deep learning (DL) models, which are state-of-the-art in many problems, could be a solution to better capture this relationship.Approach.In this study, we tested several DL-based architectures to predict imagined 3D continuous hand translation using time-frequency features extracted from ECoG signals. The dataset used in the analysis is a part of a long-term clinical trial (ClinicalTrials.gov identifier: NCT02550522) and was acquired during a closed-loop experiment with a tetraplegic subject. The proposed architectures include multilayer perceptron, convolutional neural networks (CNNs), and long short-term memory networks (LSTM). The accuracy of the DL-based and multilinear models was compared offline using cosine similarity.Main results.Our results show that CNN-based architectures outperform the current state-of-the-art multilinear model. The best architecture exploited the spatial correlation between neighboring electrodes with CNN and benefited from the sequential character of the desired hand trajectory by using LSTMs. Overall, DL increased the average cosine similarity, compared to the multilinear model, by up to 60%, from 0.189 to 0.302 and from 0.157 to 0.249 for the left and right hand, respectively.Significance.This study shows that DL-based models could increase the accuracy of BCI systems in the case of 3D hand translation prediction in a tetraplegic subject.


Subject(s)
Brain-Computer Interfaces , Deep Learning , Electrocorticography/methods , Electroencephalography/methods , Hand , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...