Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 15580, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38971875

ABSTRACT

A recent experiment probed how purposeful action emerges in early life by manipulating infants' functional connection to an object in the environment (i.e., tethering an infant's foot to a colorful mobile). Vicon motion capture data from multiple infant joints were used here to create Histograms of Joint Displacements (HJDs) to generate pose-based descriptors for 3D infant spatial trajectories. Using HJDs as inputs, machine and deep learning systems were tasked with classifying the experimental state from which snippets of movement data were sampled. The architectures tested included k-Nearest Neighbour (kNN), Linear Discriminant Analysis (LDA), Fully connected network (FCNet), 1D-Convolutional Neural Network (1D-Conv), 1D-Capsule Network (1D-CapsNet), 2D-Conv and 2D-CapsNet. Sliding window scenarios were used for temporal analysis to search for topological changes in infant movement related to functional context. kNN and LDA achieved higher classification accuracy with single joint features, while deep learning approaches, particularly 2D-CapsNet, achieved higher accuracy on full-body features. For each AI architecture tested, measures of foot activity displayed the most distinct and coherent pattern alterations across different experimental stages (reflected in the highest classification accuracy rate), indicating that interaction with the world impacts the infant behaviour most at the site of organism~world connection.


Subject(s)
Artificial Intelligence , Humans , Infant , Movement/physiology , Female , Male , Deep Learning , Awareness/physiology , Neural Networks, Computer , Environment
2.
Proc Natl Acad Sci U S A ; 120(39): e2306732120, 2023 09 26.
Article in English | MEDLINE | ID: mdl-37722059

ABSTRACT

How do human beings make sense of their relation to the world and realize their ability to effect change? Applying modern concepts and methods of coordination dynamics, we demonstrate that patterns of movement and coordination in 3 to 4-mo-olds may be used to identify states and behavioral phenotypes of emergent agency. By means of a complete coordinative analysis of baby and mobile motion and their interaction, we show that the emergence of agency can take the form of a punctuated self-organizing process, with meaning found both in movement and stillness.


Subject(s)
Movement , Infant , Humans , Motion
3.
Res Sq ; 2023 Jul 13.
Article in English | MEDLINE | ID: mdl-37503229

ABSTRACT

Can infant exploration and causal discovery be detected using Artificial Intelligence (AI)? A recent experiment probed how purposeful action emerges in early life by manipulating infants' functional connection to an object in the environment (i.e., tethering one foot to a colorful mobile). Vicon motion capture data from multiple infant joints were used here to create Histograms of Joint Displacements (HJDs) to generate pose-based descriptors for 3D infant spatial trajectories. Using HJDs as inputs, machine and deep learning systems were tasked with classifying the experimental state from which snippets of movement data were sampled. The architectures tested included k-Nearest Neighbour (kNN), Linear Discriminant Analysis (LDA), Fully connected network (FCNet), 1D-Convolutional Neural Network (1D-Conv), 1D-Capsule Network (1D-CapsNet), 2D-Conv and 2D-CapsNet. Sliding window scenarios were used for temporal analysis to search for topological changes in infant movement related to functional context. kNN and LDA achieved higher classification accuracy with single joint features, while deep learning approaches, particularly 2D-CapsNet, achieved higher accuracy on full-body features. For each AI architecture tested, measures of foot activity displayed the most distinct and coherent pattern alterations across different experimental stages (reflected in the highest classification accuracy rate), indicating that interaction with the world impacts the infant behaviour most at the site of organism∼world connection. Pairing theory-driven experimentation with AI tools thus opens a path to developing functionally-relevant assessments of infant behaviour that are likely to be useful in clinical settings.

SELECTION OF CITATIONS
SEARCH DETAIL
...