Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Neuropsychol Rev ; 31(1): 115-138, 2021 03.
Article in English | MEDLINE | ID: mdl-32918254

ABSTRACT

Poor working memory functioning is commonly found in schizophrenia. A number of studies have now tested whether non-invasive brain stimulation can improve this aspect of cognitive functioning. This report used meta-analysis to synthesise the results of these studies to examine whether transcranial electrical stimulation (tES) or repetitive transcranial magnetic stimulation (rTMS) can improve working memory in schizophrenia. The studies included in this meta-analysis were sham-controlled, randomised controlled trials that utilised either tES or rTMS to treat working memory problems in schizophrenia. A total of 22 studies were included in the review. Nine studies administered rTMS and 13 administered tES. Meta-analysis revealed that compared to sham/placebo stimulation, neither TMS nor tES significantly improved working memory. This was found when working memory was measured with respect to the accuracy on working memory tasks (TMS studies: Hedges' g = 0.112, CI95: -0.082, 0.305, p = .257; tES studies Hedges' g = 0.080, CI95: -0.117, 0.277, p = .427) or the speed working memory tasks were completed (rTMS studies: Hedges' g = 0.233, CI95: -0.212, 0.678, p = .305; tES studies Hedges' g = -0.016, CI95: -0.204, 0.173, p = .871). For tES studies, meta-regression analysis found that studies with a larger number of stimulation sessions were associated with larger treatment effects. This association was not found for TMS studies. At present, rTMS and tES is not associated with a reliable improvement in working memory for individuals with schizophrenia.


Subject(s)
Schizophrenia , Transcranial Direct Current Stimulation , Brain , Humans , Memory, Short-Term , Randomized Controlled Trials as Topic , Schizophrenia/therapy , Transcranial Magnetic Stimulation
2.
Brain Cogn ; 127: 34-41, 2018 11.
Article in English | MEDLINE | ID: mdl-30253264

ABSTRACT

This study examined the role of the left inferior frontal gyrus in the implicit learning and retention of a 'simple' first order conditional (FOC) sequence and a relatively 'complex' second order conditional (SOC) sequence, using anodal transcranial direct current stimulation (a-tDCS). Groups of healthy adults received either a-tDCS (n = 18) over the left inferior frontal gyrus or sham/placebo (n = 18) stimulation. On separate days, participants completed a serial reaction time (SRT) task whilst receiving stimulation. On one of the days, participants were presented with a FOC sequence and in another, a SOC sequence. Both the learning and short-term retention of the sequences were measured. Results showed a-tDCS enhanced the short-term retention of the SOC sequence but not the FOC sequence. There was no effect of a-tDCS on the learning of either FOC or SOC sequences. The results provide evidence of prefrontal involvement in the retention of a motor sequence. However, its role appears to be influenced by the complexity of the sequence's structure. Additionally, the results show a-tDCS can enhance retention of an implicitly learnt motor sequence.


Subject(s)
Learning/physiology , Prefrontal Cortex/physiology , Retention, Psychology/physiology , Transcranial Direct Current Stimulation/methods , Adult , Female , Humans , Male , Reaction Time/physiology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...