Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 16(8): e0241945, 2021.
Article in English | MEDLINE | ID: mdl-34460828

ABSTRACT

Abundance and distribution of earthworms in agricultural fields is frequently proposed as a measure of soil quality assuming that observed patterns of abundance are in response to improved or degraded environmental conditions. However, it is not clear that earthworm abundances can be directly related to their edaphic environment, as noted in Darwin's final publication, perhaps limiting or restricting their value as indicators of ecological quality in any given field. We present results from a spatially explicit intensive survey of pastures within United Kingdom farms, looking for the main drivers of earthworm density at a range of scales. When describing spatial variability of both total and ecotype-specific earthworm abundance within any given field, the best predictor was earthworm abundance itself within 20-30 m of the sampling point; there were no consistent environmental correlates with earthworm numbers, suggesting that biological factors (e.g. colonisation rate, competition, predation, parasitism) drive or at least significantly modify earthworm distributions at this spatial level. However, at the national scale, earthworm abundance is well predicted by soil nitrate levels, density, temperature and moisture content, albeit not in a simple linear fashion. This suggests that although land can be managed at the farm scale to promote earthworm abundance and the resulting soil processes that deliver ecosystem services, within a field, earthworm distributions will remain patchy. The use of earthworms as soil quality indicators must therefore be carried out with care, ensuring that sufficient samples are taken within field to take account of variability in earthworm populations that is unrelated to soil chemical and physical properties.


Subject(s)
Oligochaeta/physiology , Soil/chemistry , Agriculture/methods , Animals , Biodiversity , Ecosystem , Farms , United Kingdom
2.
PLoS One ; 13(4): e0195737, 2018.
Article in English | MEDLINE | ID: mdl-29694366

ABSTRACT

This paper tries to tackle the modern challenge of practical steganalysis over large data by presenting a novel approach whose aim is to perform with perfect accuracy and in a completely automatic manner. The objective is to detect changes introduced by the steganographic process in those data objects, including signatures related to the tools being used. Our approach achieves this by first extracting reliable regularities by analyzing pairs of modified and unmodified data objects; then, combines these findings by creating general patterns present on data used for training. Finally, we construct a Naive Bayes model that is used to perform classification, and operates on attributes extracted using the aforementioned patterns. This technique has been be applied for different steganographic tools that operate in media files of several types. We are able to replicate or improve on a number or previously published results, but more importantly, we in addition present new steganalytic findings over a number of popular tools that had no previous known attacks.


Subject(s)
Pattern Recognition, Automated/methods , Algorithms , Bayes Theorem
SELECTION OF CITATIONS
SEARCH DETAIL
...