Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
3.
Transl Psychiatry ; 7(5): e1141, 2017 05 30.
Article in English | MEDLINE | ID: mdl-28556830

ABSTRACT

The catechol-o-methyltransferase (COMT) genetic variations produce pleiotropic behavioral/neuroanatomical effects. Some of these effects may vary among sexes. However, the developmental trajectories of COMT-by-sex interactions are unclear. Here we found that extreme COMT reduction, in both humans (22q11.2 deletion syndrome COMT Met) and mice (COMT-/-), was associated to cortical thinning only after puberty and only in females. Molecular biomarkers, such as tyrosine hydroxylase, Akt and neuronal/cellular counting, confirmed that COMT-by-sex divergent effects started to appear at the cortical level during puberty. These biochemical differences were absent in infancy. Finally, developmental cognitive assessment in 22q11DS and COMT knockout mice established that COMT-by-sex-dichotomous effects in executive functions were already apparent in adolescence. These findings uncover that genetic variations severely reducing COMT result in detrimental cortical and cognitive development selectively in females after their sexual maturity. This highlights the importance of taking into account the combined effect of genetics, sex and developmental stage.


Subject(s)
Catechol O-Methyltransferase/genetics , DiGeorge Syndrome/genetics , Frontal Lobe/growth & development , Puberty/genetics , Sex Characteristics , Adolescent , Animals , Biomarkers/metabolism , Brain/anatomy & histology , Brain/diagnostic imaging , Brain/metabolism , Cognition/physiology , Female , Frontal Lobe/diagnostic imaging , Frontal Lobe/metabolism , Genetic Variation , Genotype , Humans , Magnetic Resonance Imaging/methods , Male , Mice , Mice, Knockout , Puberty/metabolism
4.
Transl Psychiatry ; 7(2): e1039, 2017 02 21.
Article in English | MEDLINE | ID: mdl-28221368

ABSTRACT

The velo-cardio-facial syndrome (VCFS) is caused by hemizygous deletions on chromosome 22q11.2. The VCFS phenotype is complex and characterized by frequent occurrence of neuropsychiatric symptoms with up to 25-30% of cases suffering from psychotic disorders compared with only ~1% in the general population (odds ratio≈20-25). This makes the 22q11.2 deletion one of the most prominent risk factors for schizophrenia. However, its penetrance for neuropsychiatric phenotypes is incomplete suggesting that additional risk factors are required for disease development. These additional risk factors could lie anywhere on the genome, but by reducing the normal diploid to a haploid state, the 22q11.2 deletion could result in the unmasking of otherwise recessive alleles or functional variants on the non-deleted 22q11.2 allele. To test this hypothesis, we captured and sequenced the whole 22q11.2 non-deleted region in 88 VCFS patients with (n=40) and without (n=48) psychotic disorders to identify genetic variation that could increase the risk for schizophrenia. Single nucleotide variants (SNVs), small insertions/deletions (indels) and copy number variants were called and their distributions were compared between the two diagnostic groups using variant-, gene- and region-based association tests. None of these tests resulted in statistical evidence for the existence of a genetic variation in the non-deleted allele that would increase schizophrenia risk in VCFS patients. Power analysis showed that our study was able to achieve >80% statistical power to detect association of a risk variant with an odd ratio of ⩾22. However, it is certainly under-powered to detect risk variant of smaller effect sizes. Our study did not provide evidence that genetic variants of very large effect size located on the non-deleted 22q1.2 allele in VCFS patients increase the risk for developing psychotic disorders. Variants with smaller effects may be located in the remaining 22q11.2 allele and elsewhere in the genome. Therefore, whole exome or even genome sequencing for larger sample size would appear to be the next logical steps in the search for the genetic modifiers of the 22q11.2-deletion neuropsychiatric phenotype.


Subject(s)
Chromosomes, Human, Pair 22/genetics , DiGeorge Syndrome/genetics , Psychotic Disorders/genetics , Adolescent , Case-Control Studies , DiGeorge Syndrome/psychology , Female , Humans , Male , Polymorphism, Genetic , Psychotic Disorders/psychology , Sequence Analysis, DNA , Young Adult
5.
Hum Genomics ; 10(1): 24, 2016 06 28.
Article in English | MEDLINE | ID: mdl-27353043

ABSTRACT

BACKGROUND: In order to optimally integrate the use of high-throughput sequencing (HTS) as a tool in clinical diagnostics of likely monogenic disorders, we have created a multidisciplinary "Genome Clinic Task Force" at the University Hospitals of Geneva, which is composed of clinical and molecular geneticists, bioinformaticians, technicians, bioethicists, and a coordinator. METHODS AND RESULTS: We have implemented whole exome sequencing (WES) with subsequent targeted bioinformatics analysis of gene lists for specific disorders. Clinical cases of heterogeneous Mendelian disorders that could potentially benefit from HTS are presented and discussed during the sessions of the task force. Debate concerning the interpretation of identified variants and the content of the final report constitutes a major part of the task force's work. Furthermore, issues related to bioethics, genetic counseling, quality control, and reimbursement are also addressed. CONCLUSIONS: This multidisciplinary task force has enabled us to create a platform for regular exchanges between all involved experts in order to deal with the multiple complex issues related to HTS in clinical practice and to continuously improve the diagnostic use of HTS. In addition, this task force was instrumental to formally approve the reimbursement of HTS for molecular diagnosis of Mendelian disorders in Switzerland.


Subject(s)
Exome/genetics , Genetic Diseases, Inborn/diagnosis , High-Throughput Nucleotide Sequencing/standards , Molecular Diagnostic Techniques/standards , Genetic Diseases, Inborn/genetics , High-Throughput Nucleotide Sequencing/economics , Humans , Molecular Diagnostic Techniques/economics , Public Health Administration , Reimbursement Mechanisms , Sequence Analysis, DNA , Switzerland
6.
Leukemia ; 26(9): 2079-85, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22488219

ABSTRACT

Although acquired uniparental disomy (aUPD) has been reported in relapse acute myeloid leukemia (AML), pretransplant aUPD involving chromosome 6 is poorly documented. Such events could be of interest because loss of heterozygosity (LOH) resulting from aUPD in leukemic cells may lead to erroneous results if HLA typing for hematopoietic stem cell donor searches is performed on blood samples drawn during blastic crisis. We report here six AML patients whose HLA typing was performed on DNA extracted from peripheral blood obtained at diagnosis. We observed LOH involving the entire HLA region (three patients), HLA-A, B, C (two patients) and HLA-A only (one patient). An array-comparative genomic hybridization showed that copy number was neutral for all loci, thus revealing partial aUPD of chromosome 6p21. When HLA typing was performed on remission blood samples both haplotypes were detected. A 3-4% LOH incidence was estimated in AML patients with high blast counts. Based on DNA mixing experiments, we determined by PCR sequence-specific oligonucleotide hybridization on microbeads arrays a detection threshold for HLA-A, B, DRB1 heterozygosity in blood samples with <80% blasts. Because aUPD may be partial, any homozygous HLA result should be confirmed by a second typing performed on buccal swabs or on blood samples from the patient in remission.


Subject(s)
HLA Antigens/immunology , Leukemia, Myeloid, Acute/diagnosis , Leukemia, Myeloid, Acute/genetics , Uniparental Disomy/genetics , Adult , Comparative Genomic Hybridization , Diagnosis, Differential , Female , Histocompatibility Testing , Humans , Leukemia, Myeloid, Acute/immunology , Male , Middle Aged
7.
J Med Genet ; 35(2): 146-50, 1998 Feb.
Article in English | MEDLINE | ID: mdl-9507395

ABSTRACT

We report on a patient with a pericentric inversion of the X chromosome, 46,Y,inv(X) (p11.2q21.3), who was referred for cytogenetic analysis because of mild mental retardation, short stature, prepubescent macro-orchidism, and submucous cleft palate. The same chromosomal abnormality was found in the proband's mother. The inverted X chromosome was late replicating in all the mother's lymphocytes studied, indicative of a likely unbalanced inversion. We show, by fluorescence in situ hybridisation (FISH) using a panel of ordered yeast artificial chromosome (YAC) clones, that the Xp breakpoint is localised in Xp11.23 between DXS146 and DXS255 and that the Xq breakpoint is assigned to the X-Y homologous region in Xq21.3. YACs crossing the Xp and Xq breakpoints have been identified. One of these two breakpoints could be linked to the mental retardation in this patient as many non-specific mental retardation (MRX) loci have previously been located in the pericentromeric region of the X chromosome. Morever, the elucidation at the molecular level of this rearrangement will also indicate if cleft palate or prepubescent macro-orchidism, or both, in this boy are related to one of the two X breakpoints.


Subject(s)
Chromosome Inversion , In Situ Hybridization, Fluorescence , Intellectual Disability/genetics , Sex Chromosome Aberrations/genetics , X Chromosome/genetics , Azure Stains , Body Height , Child , Chromosome Breakage/genetics , Chromosome Breakage/physiology , Chromosome Mapping , Chromosomes, Artificial, Yeast , Cleft Palate/genetics , Female , Humans , Karyotyping , Male , Testis/abnormalities , X Chromosome/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...