Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Laryngoscope ; 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38924127

ABSTRACT

OBJECTIVES: Virtual reality (VR) and augmented reality (AR) are innovative technologies that have a wide range of potential applications in the health care industry. The aim of this study was to investigate the body of research on AR and VR applications in rhinology by performing a scoping review. DATA SOURCES: PubMed, Scopus, and Embase. REVIEW METHODS: According to PRISM-ScR guidelines, a scoping review of literature on the application of AR and/or VR in the context of Rhinology was conducted using PubMed, Scopus, and Embase. RESULTS: Forty-nine articles from 1996 to 2023 met the criteria for review. Five broad types of AR and/or VR applications were found: preoperative, intraoperative, training/education, feasibility, and technical. The subsequent clinical domains were recognized: craniovertebral surgery, nasal endoscopy, transsphenoidal surgery, skull base surgery, endoscopic sinus surgery, and sinonasal malignancies. CONCLUSION: AR and VR have comprehensive applications in Rhinology. AR for surgical navigation may have the most emerging potential in skull base surgery and endoscopic sinus surgery. VR can be utilized as an engaging training tool for surgeons and residents and as a distraction analgesia for patients undergoing office-based procedures. Additional research is essential to further understand the tangible effects of these technologies on measurable clinical results. Laryngoscope, 2024.

2.
Dev Cogn Neurosci ; 58: 101163, 2022 12.
Article in English | MEDLINE | ID: mdl-36270100

ABSTRACT

It is increasingly understood that moment-to-moment brain signal variability - traditionally modeled out of analyses as mere "noise" - serves a valuable functional role related to development, cognitive processing, and psychopathology. Multiscale entropy (MSE) - a measure of signal irregularity across temporal scales - is an increasingly popular analytic technique in human neuroscience calculated from time series such as electroencephalography (EEG) signals. MSE provides insight into the time-structure and (non)linearity of fluctuations in neural activity and network dynamics, capturing the brain's moment-to-moment complexity as it operates on multiple time scales. MSE is emerging as a powerful predictor of developmental processes and outcomes. However, differences in data preprocessing and MSE computation make it challenging to compare results across studies. Here, we (1) provide an introduction to MSE for developmental researchers, (2) demonstrate the effect of preprocessing procedures on scale-wise entropy estimates, and (3) establish a standardized EEG preprocessing and entropy estimation pipeline that adapts a critical modification to the original MSE algorithm, and generates reliable scale-wise entropy estimates capable of differentiating developmental stages and cognitive states. This novel pipeline - the Automated Preprocessing Pipe-Line for the Estimation of Scale-wise Entropy from EEG Data (APPLESEED) is fully automated, customizable, and freely available for download from https://github.com/mhpuglia/APPLESEED.


Subject(s)
Brain , Electroencephalography , Child , Humans , Entropy , Electroencephalography/methods
3.
J Immunol ; 207(1): 333-343, 2021 07 01.
Article in English | MEDLINE | ID: mdl-34155069

ABSTRACT

Ex vivo expansion followed by reinfusion of tumor-infiltrating leukocytes (TILs) has been used successfully for the treatment of multiple malignancies. Most protocols rely on the use of the cytokine IL-2 to expand TILs prior to reinfusion. In addition, TIL administration relies on systemic administration of IL-2 after reinfusion to support transferred cell survival. The use of IL-2, however, can be problematic because of its preferential expansion of regulatory T and myeloid cells as well as its systemic side effects. In this study, we describe the use of a novel IL-2 mutant retargeted to NKG2D rather than the high-affinity IL-2R for TIL-mediated immunotherapy in a murine model of malignant melanoma. We demonstrate that the NKG2D-retargeted IL-2 (called OMCPmutIL-2) preferentially expands TIL-resident CTLs, such as CD8+ T cells, NK cells, and γδT cells, whereas wild-type IL-2 provides a growth advantage for CD4+Foxp3+ T cells as well as myeloid cells. OMCPmutIL-2-expanded CTLs express higher levels of tumor-homing receptors, such as LFA-1, CD49a, and CXCR3, which correlate with TIL localization to the tumor bed after i.v. injection. Consistent with this, OMCPmutIL-2-expanded TILs provided superior tumor control compared with those expanded in wild-type IL-2. Our data demonstrate that adoptive transfer immunotherapy can be improved by rational retargeting of cytokine signaling to NKG2D-expressing CTLs rather than indiscriminate expansion of all TILs.


Subject(s)
Adoptive Transfer , Interleukin-2/immunology , Leukocytes/immunology , Melanoma/immunology , Melanoma/therapy , NK Cell Lectin-Like Receptor Subfamily K/genetics , Animals , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , NK Cell Lectin-Like Receptor Subfamily K/immunology , Signal Transduction/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...