Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Physiol ; 120(4): 1005-14, 1999 Aug.
Article in English | MEDLINE | ID: mdl-10444083

ABSTRACT

Plant alpha-1,4 glucanotransferases (disproportionating enzymes, or D-enzymes) transfer glucan chains among oligosaccharides with the concomitant release of glucose (Glc). Analysis of Chlamydomonas reinhardtii sta11-1 mutants revealed a correlation between a D-enzyme deficiency and specific alterations in amylopectin structure and starch biosynthesis, thereby suggesting previously unknown biosynthetic functions. This study characterized the biochemical activities of the alpha-1,4 glucanotransferase that is deficient in sta11-1 mutants. The enzyme exhibited the glucan transfer and Glc production activities that define D-enzymes. D-enzyme also transferred glucans among the outer chains of amylopectin (using the polysaccharide chains as both donor and acceptor) and from malto-oligosaccharides into the outer chains of either amylopectin or glycogen. In contrast to transfer among oligosaccharides, which occurs readily with maltotriose, transfer into polysaccharide required longer donor molecules. All three enzymatic activities, evolution of Glc from oligosaccharides, glucan transfer from oligosaccharides into polysaccharides, and transfer among polysaccharide outer chains, were evident in a single 62-kD band. Absence of all three activities co-segregated with the sta11-1 mutation, which is known to cause abnormal accumulation of oligosaccharides at the expense of starch. To explain these data we propose that D-enzymes function directly in building the amylopectin structure.

SELECTION OF CITATIONS
SEARCH DETAIL
...