Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Ecol Appl ; 30(6): e02126, 2020 09.
Article in English | MEDLINE | ID: mdl-32167631

ABSTRACT

Populations of invasive species often spread heterogeneously across a landscape, consisting of local populations that cluster in space but are connected by dispersal. A fundamental dilemma for invasive species control is how to optimally allocate limited fiscal resources across local populations. Theoretical work based on perfect knowledge of demographic connectivity suggests that targeting local populations from which migrants originate (sources) can be optimal. However, demographic processes such as abundance and dispersal can be highly uncertain, and the relationship between local population density and damage costs (damage function) is rarely known. We used a metapopulation model to understand how budget and uncertainty in abundance, connectivity, and the damage function, together impact return on investment (ROI) for optimal control strategies. Budget, observational uncertainty, and the damage function had strong effects on the optimal resource allocation strategy. Uncertainty in dispersal probability was the least important determinant of ROI. The damage function determined which resource prioritization strategy was optimal when connectivity was symmetric but not when it was asymmetric. When connectivity was asymmetric, prioritizing source populations had a higher ROI than allocating effort equally across local populations, regardless of the damage function, but uncertainty in connectivity structure and abundance reduced ROI of the optimal prioritization strategy by 57% on average depending on the control budget. With low budgets (monthly removal rate of 6.7% of population), there was little advantage to prioritizing resources, especially when connectivity was high or symmetric, and observational uncertainty had only minor effects on ROI. Allotting funding for improved monitoring appeared to be most important when budgets were moderate (monthly removal of 13-20% of the population). Our result showed that multiple sources of observational uncertainty should be considered concurrently for optimizing ROI. Accurate estimates of connectivity direction and abundance were more important than accurate estimates of dispersal rates. Developing cost-effective surveillance methods to reduce observational uncertainties, and quantitative frameworks for determining how resources should be spatially apportioned to multiple monitoring and control activities are important and challenging future directions for optimizing ROI for invasive species control programs.


Subject(s)
Conservation of Natural Resources , Introduced Species , Models, Biological , Population Density , Uncertainty
2.
Mol Ecol ; 29(6): 1103-1119, 2020 03.
Article in English | MEDLINE | ID: mdl-32080922

ABSTRACT

Invasive alien species are a significant threat to both economic and ecological systems. Identifying the processes that give rise to invasive populations is essential for implementing effective control strategies. We conducted an ancestry analysis of invasive feral swine (Sus scrofa, Linnaeus, 1758), a highly destructive ungulate that is widely distributed throughout the contiguous United States, to describe introduction pathways, sources of newly emergent populations and processes contributing to an ongoing invasion. Comparisons of high-density single nucleotide polymorphism genotypes for 6,566 invasive feral swine to a comprehensive reference set of S. scrofa revealed that the vast majority of feral swine were of mixed ancestry, with dominant genetic associations to Western heritage breeds of domestic pig and European populations of wild boar. Further, the rapid expansion of invasive feral swine over the past 30 years was attributable to secondary introductions from established populations of admixed ancestry as opposed to direct introductions of domestic breeds or wild boar. Spatially widespread genetic associations of invasive feral swine to European wild boar deviated strongly from historical S. scrofa introduction pressure, which was largely restricted to domestic pigs with infrequent, localized wild boar releases. The deviation between historical introduction pressure and contemporary genetic ancestry suggests wild boar-hybridization may contribute to differential fitness in the environment and heightened invasive potential for individuals of admixed domestic pig-wild boar ancestry.


Subject(s)
Animals, Wild/genetics , Hybridization, Genetic , Sus scrofa/genetics , Animals , Genetics, Population , Genotype , Introduced Species , Polymorphism, Single Nucleotide , United States
3.
Sci Rep ; 10(1): 2047, 2020 02 06.
Article in English | MEDLINE | ID: mdl-32029837

ABSTRACT

A critical element in effective wildlife management is monitoring the status of wildlife populations; however, resources to monitor wildlife populations are typically limited. We compared cost effectiveness of three common population estimation methods (i.e. non-invasive DNA sampling, camera sampling, and sampling from trapping) by applying them to wild pigs (Sus scrofa) across three habitats in South Carolina, U.S.A where they are invasive. We used mark-recapture analyses for fecal DNA sampling data, spatially-explicit capture-recapture analyses for camera sampling data, and a removal analysis for removal sampling from trap data. Density estimates were similar across methods. Camera sampling was the least expensive, but had large variances. Fecal DNA sampling was the most expensive, although this technique generally performed well. We examined how reductions in effort by method related to increases in relative bias or imprecision. For removal sampling, the largest cost savings while maintaining unbiased density estimates was from reducing the number of traps. For fecal DNA sampling, a reduction in effort only minimally reduced costs due to the need for increased lab replicates while maintaining high quality estimates. For camera sampling, effort could only be marginally reduced before inducing bias. We provide a decision tree for researchers to help make monitoring decisions.


Subject(s)
Animals, Wild/physiology , Ecological Parameter Monitoring/methods , Introduced Species/statistics & numerical data , Sus scrofa/physiology , Animals , DNA/isolation & purification , Ecological Parameter Monitoring/economics , Feces/chemistry , Population Density , Real-Time Polymerase Chain Reaction/economics , South Carolina , Video Recording/economics
4.
PLoS Negl Trop Dis ; 13(5): e0007377, 2019 05.
Article in English | MEDLINE | ID: mdl-31116732

ABSTRACT

We present a new modeling tool that can be used to maximize the impact of canine rabies management resources that are available at the local level. The model is accessible through a web-based interface that allows for flexibility in the management strategies that can be investigated. Rabies vaccination, sterilization, chemo-contraception, and euthanasia can be specified and limited to specific demographic groups. Additionally, we allowed for considerable complexity in the specification of management costs. In many areas, the costs of contacting additional dogs increases as management effort increases, and this can have important strategic implications. We illustrated the application of the model by examining several alternative management strategies in an area of Mpumalanga Province, South Africa. Our results based on this dog population suggested that puppies should be vaccinated and sterilization would not be optimal if the spatial extent of management is not large (and perhaps not even then). Furthermore, given a sufficient budget, it was evident that vaccination campaigns should be repeated annually.


Subject(s)
Dog Diseases/prevention & control , Rabies/veterinary , Animals , Dog Diseases/economics , Dog Diseases/virology , Dogs , Models, Economic , Rabies/economics , Rabies/prevention & control , Rabies Vaccines/administration & dosage , Rabies virus/genetics , Rabies virus/immunology , South Africa , Vaccination
5.
Sci Rep ; 7(1): 7821, 2017 08 10.
Article in English | MEDLINE | ID: mdl-28798293

ABSTRACT

Cross-species disease transmission between wildlife, domestic animals and humans is an increasing threat to public and veterinary health. Wild pigs are increasingly a potential veterinary and public health threat. Here we investigate 84 pathogens and the host species most at risk for transmission with wild pigs using a network approach. We assess the risk to agricultural and human health by evaluating the status of these pathogens and the co-occurrence of wild pigs, agriculture and humans. We identified 34 (87%) OIE listed swine pathogens that cause clinical disease in livestock, poultry, wildlife, and humans. On average 73% of bacterial, 39% of viral, and 63% of parasitic pathogens caused clinical disease in other species. Non-porcine livestock in the family Bovidae shared the most pathogens with swine (82%). Only 49% of currently listed OIE domestic swine diseases had published wild pig surveillance studies. The co-occurrence of wild pigs and farms increased annually at a rate of 1.2% with as much as 57% of all farms and 77% of all agricultural animals co-occurring with wild pigs. The increasing co-occurrence of wild pigs with livestock and humans along with the large number of pathogens shared is a growing risk for cross-species transmission.


Subject(s)
Communicable Diseases, Emerging/transmission , Swine Diseases/microbiology , Swine Diseases/parasitology , Zoonoses/transmission , Animals , Animals, Domestic , Animals, Wild/microbiology , Animals, Wild/parasitology , Humans , Livestock , North America/epidemiology , Poultry , Public Health , Risk Management , Sus scrofa , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...