Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Nematol ; 55(1): 20230006, 2023 Feb.
Article in English | MEDLINE | ID: mdl-37143483

ABSTRACT

Nematodes are the most abundant and diverse animals on the planet but lack representation in biodiversity research. This presents a problem for studying nematode diversity, particularly when molecular tools (i.e., barcoding and metabarcoding) rely on well-populated and curated reference databases, which are absent for nematodes. To improve molecular identification and the assessment of nematode diversity, we created and curated an 18S rRNA database specific to nematodes (18S-NemaBase) using sequences sourced from the most recent publicly available 18S rRNA SILVA v138 database. As part of the curation process, taxonomic strings were standardized to contain a fixed number of taxonomic ranks relevant to nematology and updated for the most recent accepted nematode classifications. In addition, apparent erroneous sequences were removed. To test the efficacy and accuracy of 18S-NemaBase, we compared it to an older but also curated SILVA v111 and the newest SILVA v138 by assigning taxonomies and analyzing the diversity of a nematode dataset from the Western Nebraska Sandhills. We showed that 18S-NemaBase provided more accurate taxonomic assignments and diversity assessments than either version of SILVA, with a much easier workflow and no need for manual corrections. Additionally, observed diversity further improved when 18S-NemaBase was supplemented with reference sequences from nematodes present in the study site. Although the 18S-NemaBase is a step in the right direction, a concerted effort to increase the number of high-quality, accessible, full-length nematode reference sequences is more important now than ever.

2.
J Morphol ; 281(11): 1411-1435, 2020 11.
Article in English | MEDLINE | ID: mdl-32845531

ABSTRACT

Spermatogenesis of five rhabditid nematodes was studied using transmission electron microscopy and is described herein. Structure and development of nematode sperm in all available representatives of the extensive order Rhabditida have been analysed and the main characteristics of each infraorder are discussed. The ancestral sperm of the order Rhabditida was reconstructed using maximum likelihood and Bayesian methods based on 44 ultrastructural sperm characters. The hypothetical ancestral spermatogenesis of the order Rhabditida agrees with the previously suggested "rhabditid" pattern and appears to be conserved throughout the order Rhabditida. Despite the enormous variation of rhabditid nematodes, few groups deviate from the ancestral pattern. This conserved pattern can be informative within the phylum Nematoda at order level, but poses limitations when used in taxonomic and phylogenetic analysis within Rhabditida.


Subject(s)
Biological Evolution , Rhabditida/anatomy & histology , Rhabditida/cytology , Spermatozoa/cytology , Animals , Bayes Theorem , Female , Likelihood Functions , Male , Phylogeny , Rhabditida/growth & development , Spermatogenesis , Spermatozoa/ultrastructure
3.
Micron ; 77: 25-31, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26093476

ABSTRACT

The spermatozoa from testis and spermatheca of the plant-parasitic nematode Trichodorus similis Seinhorst, 1963 (Nematoda; Triplonchida; Trichodoridae) were studied with transmission electron microscopy (TEM), being the first study on spermatogenesis of a representative of the order Triplonchida and important to unravel nematode sperm evolution. Comprehensive results could only be obtained using high-pressure freezing (HPF) and freeze-substitution instead of chemical fixation, demonstrating the importance of cryo-fixation for nematode ultrastructural research. The spermatozoa from the testis (immature spermatozoa) are unpolarized cells covered by numerous filopodia. They contain a centrally-located nucleus without a nuclear envelope, surrounded by mitochondria. Specific fibrous bodies (FB) as long parallel bundles of filaments occupy the peripheral cytoplasm. No structures resembling membranous organelles (MO), as found in the sperm of many other nematodes, were observed in immature spermatozoa of T. similis. The spermatozoa from the uterus (mature or activated spermatozoa) are bipolar cells with an anterior pseudopod and posterior main cell body (MCB), which include a nucleus, mitochondria and MO appearing as large vesicles with finger-like invaginations of the outer cell membrane, or as large vesicles connected to the inner cell membrane. The peripheral MO open to the exterior via pores. In the mature sperm, neither FBs nor filopodia were observed. An important feature of T. similis spermatozoa is the late formation of MO; they first appear in mature spermatozoa. This pattern of MO formation is known for several other orders of the nematode class Enoplea: Enoplida, Mermithida, Dioctophymatida, Trichinellida but has never been observed in the class Chromadorea.


Subject(s)
Freezing , Nematoda/ultrastructure , Spermatozoa/ultrastructure , Animals , Cell Nucleus/ultrastructure , Freeze Substitution , Male , Microscopy, Electron, Transmission , Nuclear Envelope/ultrastructure , Plants/parasitology , Pseudopodia/ultrastructure , Sperm Maturation , Spermatogenesis
SELECTION OF CITATIONS
SEARCH DETAIL
...