Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-34794104

ABSTRACT

Tilapiine fishes of the genus Oreochromis vary in their euryhaline capabilities, therefore inhabiting aquatic environments of different salinities across the African continent. We analyzed the differential gene expression in the gills before and after 6 weeks salinity challenge between the highly tolerant Mozambique tilapia (Oreochromis mossambicus) and the less tolerant Nile tilapia (O. niloticus). The pathways triggered by salinity in both tilapia species reveal immune and cell stress responses as well as turnover of ionocytes. Nevertheless, the actual differential expressed genes vary between these two species, pointing at differential transcriptomic architecture, which likely contribute to the species osmoregulation capabilities in elevated salinities.


Subject(s)
Cichlids , Tilapia , Animals , Cichlids/genetics , Gills/metabolism , Osmoregulation , Salinity , Tilapia/genetics , Transcriptome
2.
CRISPR J ; 4(4): 583-594, 2021 08.
Article in English | MEDLINE | ID: mdl-34406049

ABSTRACT

In recent years, there has been increasing demand for red tilapia, which are commercial strains of hybrids of different tilapiine species or red variants of highly inbred Nile tilapia. However, red tilapia phenotypes are genetically unstable and affected by environmental factors, resulting in nonuniform coloration with black or dark-red color blotches that reduce their market value. Solute carrier family 45 member 2 (SLC45A2) is a membrane transporter that mediates melanin biosynthesis and is evolutionarily conserved from fish to humans. In the present study, we describe the generation of a stable and heritable red tilapia phenotype by inducing loss-of-function mutations in the slc45a2 gene. For this purpose, we identified the slc45a2 gene in Nile tilapia and designed highly specific guide RNAs (gRNA) for its genomic sequence. Multiplex microinjection of slc45a2-specific ribonucleoproteins to Nile tilapia zygotes induced up to 97-99% albinism, including loss of melanin in the eye. Next-generation sequencing of the injected zygotes demonstrated that all injected fish carried mutant alleles with variable mutagenesis efficiencies. Sanger sequencing of the genomic target region in the slc45a2 gene from fin clips, sperm, and F1 offspring of a highly mutant male identified various genomic indels and germline transmission of the sperm-identified indels. Overall, this work demonstrates the generation of somatic and germline slc45a2 mutant alleles, which leads to complete albinism in Nile tilapia.


Subject(s)
Animals, Genetically Modified , CRISPR-Cas Systems , Gene Editing , Genes, Reporter , Germ Cells/metabolism , Tilapia/genetics , Alleles , Animals , Base Sequence , Cloning, Molecular , Genome , Humans , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Microinjections , Mutation , Phenotype , Phylogeny , RNA, Guide, Kinetoplastida , Sequence Analysis, DNA , Zygote
3.
Front Physiol ; 10: 808, 2019.
Article in English | MEDLINE | ID: mdl-31333482

ABSTRACT

Fish larvae differ greatly from the adult form in their morphology and organ functionality. The functionality of the gastrointestinal tract depends on the expression of various pumps, transporters, and channels responsible for feed digestion and nutrients absorption. During the larval period, the gastrointestinal tract develops from a simple closed tube, into its complex form with differentiated segments, crypts and villi, as found in the adult. In this study, we characterized the expression of three peptide transporters (PepT1a, PepT1b, and PepT2) in the gastrointestinal tract of Mozambique tilapia (Oreochromis mossambicus) larvae along 12 days of development, from pre-hatching to the completion of yolk sac absorption. Gene expression analysis revealed differential and complimentary time-dependent expression of the PepT1 variants and PepT2 along the larval development period. Immunofluorescence analysis showed differential protein localization of the three peptide transporters (PepTs) along the gastrointestinal tract, in a similar pattern to the adult. In addition, PepT1a was localized in mucosal cells in the larvae esophagus, in much higher abundance than in the adults. The results of this study demonstrate specialization of intestinal sections and absorbance potential of the enterocytes prior to the onset of active exogenous feeding, thus pointing to an uncharacterized function and role of the gastrointestinal tract and its transporters during the larval period.

4.
Front Genet ; 10: 100, 2019.
Article in English | MEDLINE | ID: mdl-30863423

ABSTRACT

Tilapias are very important to the world's aquaculture. As befitting fish of their tropical origin, their distribution, and culture practices are highly affected by low temperatures. In this study, we used genetic and genomic methodologies to reveal pathways involved in the response and tolerance of blue tilapia (Oreochromis aureus) to low temperature stress. Cold tolerance was characterized in 66 families of blue tilapia. Fish from cold-tolerant and cold-sensitive families were sampled at 24 and 12°C, and the transcriptional responses to low-temperature exposure were measured in the gills and liver by high-throughput mRNA sequencing. Four hundred and ninety four genes displayed a similar temperature-dependent expression in both tolerant and sensitive fish and in the two tissues, representing the core molecular response to low temperature exposure. KEGG pathway analysis of these genes revealed down-regulation of focal-adhesion and other cell-extracellular matrix (ECM) interactions, and up-regulation of proteasome and various intra-cellular proteolytic activities. Differential responses between cold-tolerant and cold-sensitive fish were found with genes and pathways that were up-regulated in one group and down-regulated in the other. This reverse response was characterized by genes involved in metabolic pathways such as glycolysis/gluconeogenesis in the gills and biosynthesis of amino-acids in the liver, with low temperature down-regulation in tolerant fish and up-regulation in sensitive fish.

5.
Article in English | MEDLINE | ID: mdl-30690150

ABSTRACT

The European seabass (Dicentrarchus labrax) is a teleost remarkably adapted to a wide range of water salinity, through osmoregulatory mechanisms, mainly operating in the gills and the intestine. As an important aquaculture species, its rearing in low-salinity conditions offers benefits for its inland culture. However, this demands a full comprehension of the European seabass osmoregulatory mechanisms and its response to acclimation protocols. The purpose of this study was to evaluate different acclimation protocols in terms of osmoregularity and stress response, following transferring of European seabass juveniles from seawater to freshwater. In addition, nutrient absorption was also examined since drinking rates are sensitive to salinity. The acclimation challenge was applied through three protocols: direct transfer (0 h) to freshwater, gradual transfer during 3 h and during 72 h. The short- (1 h after complete change to freshwater) and long-term effects (after 2 months) of each acclimation protocol were evaluated by assessing the expression of 1. The osmoregulatory genes: Na+/K+-ATPase α1, Na+/K+/2Cl- 1 co-transporter, aquaporins 1 and 3, and the cystic fibrosis transmembrane conductance regulator; 2. The heat shock protein 70 gene; 3. The peptide transporter genes corresponding to PepT1a, PepT1b and PepT2. The short-term acclimation response was pronounced in both gills and the intestine affecting stress-, osmoregulatory- and nutrient-related gene expression. Long-term effects were only evident in the intestine. Direct transfer in freshwater mainly induced a long-term stress response, while the short-term effect was more pronounced in the 3 h-transfer, potentially due to handling. Our results suggest that although the European seabass can withstand direct transfer to low-salinity conditions, a gradual transfer is recommended to prevent long-term stress effects.


Subject(s)
Acclimatization , Fishes/physiology , Gene Expression , Intestinal Mucosa/metabolism , Salinity , Animals , Fishes/genetics , Fresh Water , Nutrients/metabolism , Osmoregulation , Seawater
6.
Article in English | MEDLINE | ID: mdl-29366921

ABSTRACT

Tilapiine species, widely distributed across habitats with diverse water salinities, are important to aquaculture as well as a laboratory model. The effects of water salinity on two tilapia species, that differ in their salinity tolerance, was evaluated. Oreochromis niloticus reared in brackish-water, showed a significant decrease in growth and feed efficiency, whereas O. mossambicus reared in seawater did not show any significant changes. The expression and activity of Na+/K+-ATPase (NKA), V-type H+-ATPase (VHA) and carbonic anhydrase (CA), as well as expression levels of genes encoding two HCO3- and three peptide transporters (nbc1, slc26a6, slc15a1a, slc15a1b and slc15a2) were measured in three intestinal sections of these two species, grown in freshwater and brackish/sea-water. Overall, the spatial distribution along the intestine of the genes examined in this study was similar between the two species, with the exception of tcaIV. The salinity response, on the other hand, varied greatly between these species. In O. mossambicus, there was a salinity-dependent increased expression of most of the examined genes (except slc26a6 and slc15a2), while in O. niloticus the expression of most genes did not change, or even decreased (tcaIV, nbc1 and slc15a1b). This study highlighted differences in the intestinal response to salinity acclimation between closely- related species that differ in their salinity tolerance. O. mossambicus, which has a high salinity tolerance, showed expression patterns and responses similar to marine species, and differed from the low-salinity-tolerance O. niloticus, which showed a response that differed from the accepted models, that are based on marine and diadromous fishes.


Subject(s)
Acclimatization , Intestinal Mucosa/metabolism , Salinity , Tilapia/physiology , Animals , Carbonic Anhydrases/metabolism , Feeding Behavior , Ion Transport , Male , Membrane Transport Proteins/metabolism , Seawater , Sodium-Potassium-Exchanging ATPase/metabolism , Species Specificity , Tilapia/classification , Tilapia/genetics , Tilapia/growth & development , Vacuolar Proton-Translocating ATPases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...