Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Hum Factors ; 60(2): 191-200, 2018 03.
Article in English | MEDLINE | ID: mdl-29161154

ABSTRACT

Objective We examined the impacts of pulling task (breakaway and pull-down tasks at different postures), glove use, and their interaction on achievable downward pull forces from a ladder rung. Background Posture, glove use, and the type of pulling task are known to affect the achievable forces. However, a gap in the literature exists regarding how these factors affect achievable downward pulling forces, which are relevant to recovery from a perturbation during ladder climbing. Methods Forty subjects completed four downward pulling tasks (breakaway force; pull force at maximum height, shoulder height, and a middle height), using three glove conditions with varying coefficient of friction (COF) levels (cotton glove, low COF; bare hand, moderate COF; and latex-coated glove, high COF) with their dominant and nondominant hand. The outcome variable was the maximum force normalized to body weight. Results The highest forces were observed for the highest hand postures (breakaway and maximum height). Increased COF led to higher forces and had a larger effect on breakaway force than the other tasks. The dominant hand was associated with higher forces than the nondominant hand. Male subjects generated greater forces than female subjects, particularly for higher hand positions. Conclusion This study suggests that a higher hand position on the ladder, while avoiding low-friction gloves, may be effective for improving recovery from ladder perturbations. Application This study may guide preferred climbing strategies (particularly those that lead to a higher hand position) for improving recovery from a perturbation during ladder climbing.


Subject(s)
Biomechanical Phenomena/physiology , Gloves, Protective , Hand/physiology , Motor Activity/physiology , Posture/physiology , Adult , Female , Friction , Humans , Male
2.
Physiol Meas ; 36(1): N15-21, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25501948

ABSTRACT

Recently, the application of vibrotactile noise to the wrist or back of the hand has been shown to enhance fingertip tactile sensory perception (Enders et al 2013), supporting the potential for an assistive device worn at the wrist, that generates minute vibrations to help the elderly or patients with sensory deficit. However, knowledge regarding the detailed physiological mechanism behind this sensory improvement in the central nervous system, especially in the human brain, is limited, hindering progress in development and use of such assistive devices. To enable investigation of the impact of vibrotactile noise on sensorimotor brain activity in humans, a magnetic resonance imaging (MRI)-compatible vibrotactile system was developed to provide vibrotactile noise during an MRI of the brain. The vibrotactile system utilizes a remote (outside the MR room) signal amplifier which provides a voltage from -40 to +40 V to drive a 12 mm diameter piezoelectric vibrator (inside the MR room). It is portable and is found to be MRI-compatible which enables its use for neurologic investigation with MRI. The system was also found to induce an improvement in fingertip tactile sensation, consistent with the previous study.


Subject(s)
Hand , Magnetic Resonance Imaging , Physical Stimulation/instrumentation , Vibration , Brain/physiology , Equipment Design , Hand/physiology , Humans , Magnetic Resonance Imaging/instrumentation , Phantoms, Imaging , Touch Perception/physiology
3.
Appl Ergon ; 45(4): 833-8, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24239565

ABSTRACT

This study determined the impact of changing block surfaces on hand function, as well as identified particularly time-consuming movement components post stroke, measured by the Box and Block Test (BBT). Eight chronic stroke survivors and eight age- and gender-matched control subjects participated in this study. The BBT score (number of blocks moved) and time for seven movement components were compared for three different block surfaces (wood, paper, and rubber). The rubber blocks improved BBT scores 8% (compared to all other conditions) not only for control subjects but also for the paretic and non-paretic hands of stroke survivors, by reducing movement time for finger closing and contact-to-lift. Modifying daily objects' surfaces with rubber could help stroke survivors' hand function. The paretic hand displayed notably slower movement for contact-to-lift, transport-release, reach before barrier, and reach after barrier suggesting that therapies may focus on goal directed reaching and object grasping/releasing.


Subject(s)
Hand/physiopathology , Movement/physiology , Stroke/physiopathology , Case-Control Studies , Female , Fingers/physiology , Hand Strength/physiology , Humans , Male , Middle Aged , Task Performance and Analysis
4.
J Mot Behav ; 44(3): 169-78, 2012.
Article in English | MEDLINE | ID: mdl-22456054

ABSTRACT

The objective of this study was to observe how the digits of the hand adjust to varying location of the center of mass (CoM) above or below the grasp and rotational inertia (RI) of a handheld object. Such manipulations do not immediately affect the equilibrium equations while stability control is affected. Participants were instructed to hold a handle, instrumented with 5 force-torque transducers and a 3-D rotational tilt sensor, while either the location of the CoM or the RI values were adjusted. On the whole, people use 2 mechanisms to adjust to the changed stability requirements; they increase the grip force and redistribute the total moment between the normal and tangential forces offsetting internal torques. The increase in grip force, an internal force, and offsetting internal torques allows for increases in joint and hand rotational apparent stiffness while not creating external forces-torques that would unbalance the equations of equilibrium.


Subject(s)
Fingers/physiology , Hand Strength/physiology , Adult , Biomechanical Phenomena/physiology , Humans , Male , Movement/physiology , Psychomotor Performance/physiology , Torque
5.
J Appl Biomech ; 28(1): 78-84, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22431218

ABSTRACT

When grasping and manipulating objects, the central controller utilizes the mechanical advantage of the normal forces of the fingers for torque production. Whether the same is valid for tangential forces is unknown. The main purpose of this study was to determine the patterns of finger tangential forces and the use of mechanical advantage as a control mechanism when dealing with objects of nonuniform finger positioning. A complementary goal was to explore the interaction of mechanical advantage (moment arm) and the role a finger has as a torque agonist/antagonist with respect to external torques (±0.4 N m). Five 6-df force/torque transducers measured finger forces while subjects held a prism handle (6 cm width × 9 cm height) with and without a single finger displaced 2 cm (handle width). The effect of increasing the tangential moment arm was significant (p < .01) for increasing tangential forces (in >70% of trials) and hence creating greater moments. Thus, the data provides evidence that the grasping system as a rule utilizes mechanical advantage for generating tangential forces. The increase in tangential force was independent of whether the finger was acting as a torque agonist or antagonist, revealing their effects to be additive.


Subject(s)
Fingers/physiology , Hand Strength/physiology , Isometric Contraction/physiology , Motor Skills/physiology , Torque , Adult , Analysis of Variance , Biomechanical Phenomena , Female , Humans , Male , Muscle, Skeletal/physiology
6.
J Biomech ; 45(2): 218-24, 2012 Jan 10.
Article in English | MEDLINE | ID: mdl-22134182

ABSTRACT

Radial force (F(r)) distributions describe grip force coordination about a cylindrical object. Recent studies have employed only explicit F(r) tasks, and have not normalized for anatomical variance when considering F(r) distributions. The goals of the present study were (i) to explore F(r) during tangential force production tasks, and (ii) to examine the extent to which anatomical registration (i.e. spatial normalization of anatomically analogous structures) could improve signal detectability in F(r) data. Twelve subjects grasped a vertically oriented cylindrical handle (diameter=6 cm) and matched target upward tangential forces of 10, 20, and 30 N. F(r) data were measured using a flexible pressure mat with an angular resolution of 4.8°, and were registered using piecewise-linear interpolation between five manually identified points-of-interest. Results indicate that F(r) was primarily limited to three contact regions: the distal thumb, the distal fingers, and the fingers' metatacarpal heads, and that, while increases in tangential force caused significant increases in F(r) for these regions, they did not significantly affect the F(r) distribution across the hand. Registration was found to substantially reduce between-subject variability, as indicated by both accentuated F(r) trends, and amplification of the test statistic. These results imply that, while subjects focus F(r) primarily on three anatomical regions during cylindrical grasp, inter-subject anatomical differences introduce a variability that, if not corrected for via registration, may compromise one's ability to draw anatomically relevant conclusions from grasping force data.


Subject(s)
Arm/physiology , Hand Strength/physiology , Hand/physiology , Models, Biological , Adult , Arm/anatomy & histology , Biomechanical Phenomena , Hand/anatomy & histology , Humans , Male
7.
Exp Brain Res ; 213(1): 125-39, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21735245

ABSTRACT

When people transport handheld objects, they change the grip force with the object movement. Circular movement patterns were tested within three planes at two different rates (1.0, 1.5 Hz) and two diameters (20, 40 cm). Subjects performed the task reasonably well, matching frequencies and dynamic ranges of accelerations within expectations. A mathematical model was designed to predict the applied normal forces from kinematic data. The model is based on two hypotheses: (a) the grip force changes during movements along complex trajectories can be represented as the sum of effects of two basic commands associated with the parallel and orthogonal manipulation, respectively; (b) different central commands are sent to the thumb and virtual finger (Vf-four fingers combined). The model predicted the actual normal forces with a total variance accounted for of better than 98%. The effects of the two components of acceleration-along the normal axis and the resultant acceleration within the shear plane-on the digit normal forces are additive.


Subject(s)
Hand Strength/physiology , Models, Biological , Models, Theoretical , Movement/physiology , Psychomotor Performance/physiology , Adult , Analysis of Variance , Biomechanical Phenomena , Female , Humans , Male , Task Performance and Analysis , Young Adult
8.
Clin Biomech (Bristol, Avon) ; 25(6): 541-5, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20359800

ABSTRACT

BACKGROUND: Females have a higher risk of experiencing low back pain or injury than males. One possible reason for this might be altered reflexes since longer paraspinal reflex latencies exist in injured patients versus healthy controls. Gender differences have been reported in paraspinal reflex latency, yet findings are inconsistent. The goal here was to investigate gender differences in paraspinal reflex latency, avoiding and accounting for potentially gender-confounding experimental factors. METHODS: Ten males and ten females underwent repeated trunk flexion perturbations. Paraspinal muscle activity and trunk kinematics were recorded to calculate reflex latency and maximum trunk flexion velocity. Two-way mixed model analyses of variance were used to determine the effects of gender on reflex latency and maximum trunk flexion velocity. FINDINGS: Reflex latency was 18.7% shorter in females than in males (P=0.02) when exposed to identical trunk perturbations, and did not vary by impulse (P=0.38). However, maximum trunk flexion velocity was 35.3% faster in females than males (P=0.01) when exposed to identical trunk perturbations, and increased with impulse (P<0.01). While controlling for differences in maximum trunk flexion velocity, reflex latency was 16.4% shorter in females than males (P=0.04). INTERPRETATION: The higher prevalence of low back pain and injury among females does not appear to result from slower paraspinal reflexes.


Subject(s)
Back Injuries/diagnosis , Low Back Pain/diagnosis , Movement/physiology , Adult , Biomechanical Phenomena , Electromyography/methods , Female , Humans , Male , Muscle Contraction/physiology , Posture , Reflex , Sex Factors , Spine/pathology
9.
Clin Biomech (Bristol, Avon) ; 23(4): 381-6, 2008 May.
Article in English | MEDLINE | ID: mdl-18093708

ABSTRACT

BACKGROUND: Low back disorders and their prevention is of great importance for companies and their employees. Whole-body vibration is thought to be a risk factor for low back disorders, but the neuromuscular, biomechanical, and/or physiological mechanisms responsible for this increased risk are unclear. The purpose of this study was to measure the acute effect of seated whole-body vibration on the postural control of the trunk during unstable seated balance. METHODS: Twenty-one healthy subjects (age: 23 years (SD 4 years)) were tested on a wobble chair designed to measure trunk postural control. Measurements of kinematic variance and non-linear stability control were based on seat angle before and after 30 min of seated whole-body vibration (bandwidth=2-20 Hz, root-mean-squared amplitude=1.15m/s(2)). FINDINGS: All measures of kinematic variance of unstable seated balance increased (P<0.05) after vibration including: ellipse area (35.5%), root-mean-squared radial lean angle (17.9%), and path length (12.2%). Measures of non-linear stability control also increased (P<0.05) including Lyapunov exponent (8.78%), stability diffusion analysis (1.95%), and Hurst rescaled range analysis (5.2%). INTERPRETATION: Whole-body vibration impaired postural control of the trunk as evidenced by the increase in kinematic variance and non-linear stability control measures during unstable sitting. These findings imply an impairment in spinal stability and a mechanism by which vibration may increase low back injury risk. Future work should investigate the effects of whole-body vibration on the anatomical and neuromuscular components that contribute to spinal stability.


Subject(s)
Back/physiology , Postural Balance/physiology , Vibration/adverse effects , Adult , Biomechanical Phenomena , Female , Humans , Kinesthesis/physiology , Male , Movement/physiology , Posture/physiology , Transducers
SELECTION OF CITATIONS
SEARCH DETAIL
...