Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Exp Med Biol ; 911: 17-22, 2016.
Article in English | MEDLINE | ID: mdl-26987333

ABSTRACT

Chromium is a well-known mutagen and carcinogen involved in lung cancer development. DNA repair genes play an important role in the elimination of genetic changes caused by chromium exposure. In the present study, we investigated the polymorphisms of the following DNA repair genes: XRCC3, participating in the homologous recombination repair, and hMLH1 and hMSH2, functioning in the mismatch repair. We focused on the risk the polymorphisms present in the development of lung cancer regarding the exposure to chromium. We analyzed 106 individuals; 45 patients exposed to chromium with diagnosed lung cancer and 61 healthy controls. Genotypes were determined by a PCR-RFLP method. We unravelled a potential for increased risk of lung cancer development in the hMLH1 (rs1800734) AA genotype in the recessive model. In conclusion, gene polymorphisms in the DNA repair genes underscores the risk of lung cancer development in chromium exposed individuals.


Subject(s)
Chromium/adverse effects , DNA-Binding Proteins/genetics , Lung Neoplasms/genetics , MutL Protein Homolog 1/genetics , MutS Homolog 2 Protein/genetics , Occupational Exposure/adverse effects , Polymorphism, Genetic/genetics , Aged , Aged, 80 and over , Case-Control Studies , DNA Repair , Female , Follow-Up Studies , Genetic Predisposition to Disease , Genotype , Humans , Lung Neoplasms/chemically induced , Lung Neoplasms/pathology , Male , Middle Aged , Neoplasm Staging , Prognosis , Risk Factors , Survival Rate
2.
Adv Exp Med Biol ; 833: 1-8, 2015.
Article in English | MEDLINE | ID: mdl-25300687

ABSTRACT

Chromium is a well known carcinogen involved in the lung cancer development. Polymorphism of some of the DNA repair genes may be associated with elevated risk of cancerous transformation. In the present study, we investigated the polymorphisms of the following selected members of the base and nucleotide excision repair genes: XPC (Lys939Gln), XPD (Lys751Gln), XRCC1(Arg399Gln), and hOGG1(Ser326Ser), and the risk they present toward the development of lung cancer, with emphasis on the effect of chromium exposure. We analyzed 119 individuals; 50 patients exposed to chromium with diagnosed lung cancer and 69 healthy controls. Genotypes were determined by a PCR-RFLP method. We found a significantly increased risk of lung cancer development in XPD genotype Lys/Gln (OR=1.94; 95% CI=1.10-3.43; p=0.015) and in the gene combinations: XPD Lys/Gln+XPC Lys/Gln (OR=6.5; 95% CI=1.53-27.49; p=0.009) and XPD Lys/Gln+XPC Gln/Gln(OR=5.2; 95% CI=1.07-25.32; p=0.04). In conclusion, gene polymorphisms in the DNA repair genes may underscore the risk of lung cancer development in the chromium-exposed individuals.


Subject(s)
Chromium/toxicity , DNA Repair , Lung Neoplasms/chemically induced , Polymorphism, Genetic , Adult , Aged , Aged, 80 and over , DNA-Binding Proteins/genetics , Environmental Exposure , Female , Genetic Predisposition to Disease , Humans , Lung Neoplasms/genetics , Male , Middle Aged , X-ray Repair Cross Complementing Protein 1 , Xeroderma Pigmentosum Group D Protein/genetics
3.
Adv Exp Med Biol ; 833: 15-22, 2015.
Article in English | MEDLINE | ID: mdl-25252909

ABSTRACT

hMLH1 and hMSH2 are two of the main members of the mismatch repair (MMR) genes family. Polymorphism of MMR genes is associated with a risk of developing sporadic and hereditary tumors. In the present case-control study, we investigated the promoter polymorphisms of selected mismatch repair genes: hMLH1 (rs1800734) and hMSH2 (rs2303425), and the risk they present regarding the development of lung cancer in the Slovak population. The study included 422 lung cancer cases, 511 controls for hMLH1 gene and 486 controls for hMSH2 gene. Polymorphism was investigated by a PCR-RFLP method. The risk of cancer development was evaluated in both dominant and recessive genetic models. The evaluation of rs1800734 polymorphism in patients in the dominant model showed a significantly decreased risk of lung cancer in the presence of at least one variant allele A (genotype GA and AA) (OR=1.40; 95% CI=1.08-1.82; p=0.01). These findings were equally strong expressed in women (OR=2.00; 95% CI=1.23-3.25; p=0.006). The results for rs2303425 polymorphism revealed an increased risk of lung cancer for variant genotype CC (OR=2.28; 95% CI=1.12-4.63; p=0.024) in the recessive model. A combination of rs1800734 and rs2303425 polymorphisms was shown to be risky for genotype GGCC; OR=3.08; 95% CI=1.09-8.72; p=0.03. The risk appeared even greater in female gender; (OR=11.56; 95% CI=1.33-100.36, 1.26-94.66; p=0.005. We conclude that the genotype of mismatch repair genes underscores the risk of lung cancer development in the Slovak population.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , MutS Homolog 2 Protein/genetics , Nuclear Proteins/genetics , Polymorphism, Genetic , Adult , Aged , Aged, 80 and over , Female , Humans , Lung Neoplasms/etiology , Lung Neoplasms/genetics , Male , Middle Aged , MutL Protein Homolog 1 , Promoter Regions, Genetic , Risk
4.
Mol Biol Rep ; 40(9): 5261-73, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23673479

ABSTRACT

Polymorphisms in nucleotide and base excision repair genes are associated with the variability in the risk of developing lung cancer. In the present study, we investigated the polymorphisms of following selected DNA repair genes: XPC (Lys939Gln), XPD (Lys751Gln), hOGG1 (Ser326Cys) and XRCC1 (Arg399Gln), and the risks they present towards the development of lung cancer with the emphasis to gender differences within the Slovak population. We analyzed 761 individuals comprising 382 patients with diagnosed lung cancer and 379 healthy controls. Genotypes were determined by polymerase chain reaction/restriction fragment length polymorphism method. We found out statistically significant increased risk for lung cancer development between genders. Female carrying XPC Gln/Gln, XPC Lys/Gln+Gln/Gln and XRCC1 Arg/Gln, XRCC1 Arg/Gln+Gln/Gln genotypes had significantly increased risk of lung cancer corresponding to OR = 2.06; p = 0.04, OR = 1.66; p = 0.04 and OR = 1.62; p = 0.04, OR = 1.69; p = 0.02 respectively. In total, significantly increased risk of developing lung cancer was found in the following combinations of genotypes: XPD Lys/Gln+XPC Lys/Lys (OR = 1.62; p = 0.04), XRCC1 Gln/Gln+hOGG1 Ser/Ser (OR = 2.14; p = 0.02). After stratification for genders, the following combinations of genotype were found to be significant in male: XPD Lys/Gln+XPC Lys/Lys (OR = 1.87; p = 0.03), XRCC1 Arg/Gln+XPC Lys/Lys (OR = 4.52; p = 0.0007), XRCC1 Arg/Gln+XPC Lys/Gln (OR = 5.44; p < 0.0001). In female, different combinations of the following genotypes were found to be significant: XRCC1 Arg/Gln+hOGG1 Ser/Ser (OR = 1.98; p = 0.04), XRCC1 Gln/Gln+hOGG1 Ser/Ser (OR = 3.75; p = 0.02), XRCC1 Arg/Gln+XPC Lys/Gln (OR = 2.40; p = 0.04), XRCC1 Arg/Gln+XPC Gln/Gln (OR = 3.03; p = 0.04). We found out decreased cancer risk in genotype combinations between female patients and healthy controls: XPD Lys/Lys+XPC Lys/Gln (OR = 0.45; p = 0.02), XPD Lys/Gln+XPC Lys/Lys (OR = 0.32; p = 0.005), XPD Lys/Gln+XPC Lys/Gln (OR = 0.48; p = 0.02). Our results did not show any difference between pooled smokers and non-smokers in observed gene polymorphisms in the association to the lung cancer risk. However, gender stratification indicated the possible effect of heterozygous constitution of hOGG1 gene (Ser/Cys) on lung cancer risk in female non-smokers (OR = 0.20; p = 0.01) and heterozygous constitution of XPC gene (Lys/Gln) in male smokers (OR = 2.70; p = 0.01).


Subject(s)
DNA Glycosylases/genetics , DNA Repair/genetics , DNA-Binding Proteins/genetics , Lung Neoplasms/genetics , Polymorphism, Genetic/genetics , Xeroderma Pigmentosum Group D Protein/genetics , DNA Primers/genetics , Female , Genotype , Humans , Male , Odds Ratio , Polymerase Chain Reaction , Polymorphism, Restriction Fragment Length , Polymorphism, Single Nucleotide/genetics , Sex Factors , Slovakia , X-ray Repair Cross Complementing Protein 1
SELECTION OF CITATIONS
SEARCH DETAIL
...