Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Cell Sci ; 136(3)2023 02 01.
Article in English | MEDLINE | ID: mdl-36620935

ABSTRACT

High expression of the non-receptor tyrosine kinase FER is an independent prognostic factor that correlates with poor survival in breast cancer patients. To investigate whether the kinase activity of FER is essential for its oncogenic properties, we developed an ATP analogue-sensitive knock-in allele (FERASKI). Specific FER kinase inhibition in MDA-MB-231 cells reduces migration and invasion, as well as metastasis when xenografted into a mouse model of breast cancer. Using the FERASKI system, we identified Ski family transcriptional corepressor 1 (SKOR1) as a direct FER kinase substrate. SKOR1 loss phenocopies FER inhibition, leading to impaired proliferation, migration and invasion, and inhibition of breast cancer growth and metastasis formation in mice. We show that SKOR1 Y234, a candidate FER phosphorylation site, is essential for FER-dependent tumor progression. Finally, our work suggests that the SKOR1 Y234 residue promotes Smad2/3 signaling through SKOR1 binding to Smad3. Our study thus identifies SKOR1 as a mediator of FER-dependent progression of high-risk breast cancers.


Subject(s)
Neoplasms , Protein-Tyrosine Kinases , Animals , Mice , Protein-Tyrosine Kinases/metabolism , Cell Line, Tumor , Cell Movement , Phosphorylation , Signal Transduction , Neoplasms/metabolism
2.
Cell Rep ; 39(1): 110584, 2022 04 05.
Article in English | MEDLINE | ID: mdl-35385742

ABSTRACT

Elevated expression of non-receptor tyrosine kinase FER is an independent prognosticator that correlates with poor survival of high-grade and basal/triple-negative breast cancer (TNBC) patients. Here, we show that high FER levels are also associated with improved outcomes after adjuvant taxane-based combination chemotherapy in high-risk, HER2-negative patients. In TNBC cells, we observe a causal relation between high FER levels and sensitivity to taxanes. Proteomics and mechanistic studies demonstrate that FER regulates endosomal recycling, a microtubule-dependent process that underpins breast cancer cell invasion. Using chemical genetics, we identify DCTN2 as a FER substrate. Our work indicates that the DCTN2 tyrosine 6 is essential for the development of tubular recycling domains in early endosomes and subsequent propagation of TNBC cell invasion in 3D. In conclusion, we show that high FER expression promotes endosomal recycling and represents a candidate predictive marker for the benefit of adjuvant taxane-containing chemotherapy in high-risk patients, including TNBC patients.


Subject(s)
Breast Neoplasms , Triple Negative Breast Neoplasms , Breast Neoplasms/metabolism , Bridged-Ring Compounds/pharmacology , Bridged-Ring Compounds/therapeutic use , Endosomes/metabolism , Female , Humans , Taxoids/pharmacology , Taxoids/therapeutic use , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...