Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 945: 173910, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38880149

ABSTRACT

Approximately 1.3 billion metric tons of agricultural and food waste is produced annually, highlighting the need for appropriate processing and management strategies. This paper provides an exhaustive overview of the utilization of agri-food waste as a biosorbents for the elimination of volatile organic compounds (VOCs) from gaseous streams. The review paper underscores the critical role of waste management in the context of a circular economy, wherein waste is not viewed as a final product, but rather as a valuable resource for innovative processes. This perspective is consistent with the principles of resource efficiency and sustainability. Various types of waste have been described as effective biosorbents, and methods for biosorbents preparation have been discussed, including thermal treatment, surface activation, and doping with nitrogen, phosphorus, and sulfur atoms. This review further investigates the applications of these biosorbents in adsorbing VOCs from gaseous streams and elucidates the primary mechanisms governing the adsorption process. Additionally, this study sheds light on methods of biosorbents regeneration, which is a key aspect of practical applications. The paper concludes with a critical commentary and discussion of future perspectives in this field, emphasizing the need for more research and innovation in waste management to fully realize the potential of a circular economy. This review serves as a valuable resource for researchers and practitioners interested in the potential use of agri-food waste biosorbents for VOCs removal, marking a significant first step toward considering these aspects together.


Subject(s)
Air Pollutants , Volatile Organic Compounds , Volatile Organic Compounds/analysis , Air Pollutants/analysis , Waste Management/methods , Gases/analysis , Adsorption , Agriculture/methods , Food Loss and Waste
2.
Chemosphere ; 346: 140533, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38303396

ABSTRACT

This paper proposes the preparation of a new sorbent material based on melamine sponges (MS) with superhydrophobic, superoleophilic, and magnetic properties. This study involved impregnating the surface of commercially available MS with eco-friendly deep eutectic solvents (DES) and Fe3O4 nanoparticles. The DES selection was based on the screening of 105 eutectic mixtures using COSMO-RS modeling. Other parameters affecting the efficiency and selectivity of oil removal from water were optimized using the Box-Bhenken model. Menthol:Thymol (1:1)@Fe3O4-MS exhibited the highest sorption capacity for real crude oils (101.7-127.3 g/g). This new sponge demonstrated paramagnetic behavior (31.06 emu/g), superhydrophobicity (151°), superoleophobicity (0°), low density (15.6 mg/cm3), high porosity (99 %), and excellent mechanical stability. Furthermore, it allows multiple regeneration processes without losing its sorption capacity. Based on these benefits, Menthol:Thymol (1:1)@Fe3O4-MS shows promise as an efficient, cost-effective, and eco-friendly substitute for the existing sorbents.


Subject(s)
Petroleum , Triazines , Water/chemistry , Menthol , Thymol , Hydrophobic and Hydrophilic Interactions , Magnetic Phenomena
3.
J Hazard Mater ; 425: 127972, 2022 03 05.
Article in English | MEDLINE | ID: mdl-34891017

ABSTRACT

The paper described a new method for crude oil-water separation by means of superhydrophobic melamine sponges impregnated by deep eutectic solvents (MS-DES). Due to the numerous potential of two-component DES formation, simple and quick screening of 156 non-ionic deep eutectic solvents using COSMO-RS (Conductor-like Screening Model for Real Solvents) computational model was used. DES which were characterized by high solubility of hydrocarbons and the lowest water solubility were synthesized and embedded on melamine sponges. The new sponges were characterized by Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), X-ray diffraction (XRD), and goniometer. Several parameters affecting the crude oil-water separation (i.e. type and amount of DES, density and porosity of sponges, water contact eagle) were thoroughly studied. In order to studies of MS-DES affinity to the selected groups of crude oil i.e. Saturated, Aromatic, Resins, Asphaltenes (SARA) the thin layer liquid chromatography-flame ionization detection (TLC-FID) was used. The obtained results indicate that the melamine sponges impregnated by DES composed of eucalyptol and menthol in 1:5 molar ratio have high real crude oil absorption capacity in the range of 96.1 - 132.2 g/g and slightly depends on crude oil compositions, superhydrophobic properties (water contact angle 152°), low density of 9.23 mg/cm3, high porosity of 99.39%, and excellent reusability which was almost not changing even after 80 cycles. The outcomes indicate that new MS-DES materials could be excellent alternatives as absorbents for the cleanup of crude oil-polluted water.


Subject(s)
Deep Eutectic Solvents , Water , Hydrophobic and Hydrophilic Interactions , Solvents , Spectroscopy, Fourier Transform Infrared
4.
Int J Mol Sci ; 22(17)2021 Sep 02.
Article in English | MEDLINE | ID: mdl-34502455

ABSTRACT

During biogas combustion, siloxanes form deposits of SiO2 on engine components, thus shortening the lifespan of the installation. Therefore, the development of new methods for the purification of biogas is receiving increasing attention. One of the most effective methods is physical absorption with the use of appropriate solvents. According to the principles of green engineering, solvents should be biodegradable, non-toxic, and have a high absorption capacity. Deep eutectic solvents (DES) possess such characteristics. In the literature, due to the very large number of DES combinations, conductor-like screening models for real solvents (COSMO-RS), based on the comparison of siloxane activity coefficient of 90 DESs of various types, were studied. DESs, which have the highest affinity to siloxanes, were synthesized. The most important physicochemical properties of DESs were carefully studied. In order to explain of the mechanism of DES formation, and the interaction between DES and siloxanes, the theoretical studies based on σ-profiles, and experimental studies including the 1H NMR, 13C NMR, and FT-IR spectra, were applied. The obtained results indicated that the new DESs, which were composed of carvone and carboxylic acids, were characterized by the highest affinity to siloxanes. It was shown that the hydrogen bonds between the active ketone group (=O) and the carboxyl group (-COOH) determined the formation of stable DESs with a melting point much lower than those of the individual components. On the other hand, non-bonded interactions mainly determined the effective capture of siloxanes with DES.


Subject(s)
Biofuels , Cyclohexane Monoterpenes/chemistry , Siloxanes/isolation & purification , Solvents/chemistry , Absorption, Physicochemical
5.
Materials (Basel) ; 14(2)2021 Jan 06.
Article in English | MEDLINE | ID: mdl-33418968

ABSTRACT

The paper presents the screening of 20 deep eutectic solvents (DESs) composed of tetrapropylammonium bromide (TPABr) and glycols in various molar ratios, and 6 conventional solvents as absorbents for removal of siloxanes from model biogas stream. The screening was achieved using the conductor-like screening model for real solvents (COSMO-RS) based on the comparison of siloxane solubility in DESs. For the DES which was characterized by the highest solubility of siloxanes, studies of physicochemical properties, i.e., viscosity, density, and melting point, were performed. DES composed of tetrapropylammonium bromide (TPABr) and tetraethylene glycol (TEG) in a 1:3 molar ratio was used as an absorbent in experimental studies in which several parameters were optimized, i.e., the temperature, absorbent volume, and model biogas flow rate. The mechanism of siloxanes removal was evaluated by means of an experimental FT-IR analysis as well as by theoretical studies based on σ-profile and σ-potential. On the basis of the obtained results, it can be concluded that TPABr:TEG (1:3) is a very effective absorption solvent for the removal of siloxanes from model biogas, and the main driving force of the absorption process is the formation of the hydrogen bonds between DES and siloxanes.

6.
Molecules ; 27(1)2021 Dec 28.
Article in English | MEDLINE | ID: mdl-35011389

ABSTRACT

The methods for hydrogen yield efficiency improvements, the gaseous stream purification in gaseous biofuels generation, and the biomass pretreatment are considered as the main trends in research devoted to gaseous biofuel production. The environmental aspect related to the liquid stream purification arises. Moreover, the management of post-fermentation broth with the application of various biorefining techniques gains importance. Chemical compounds occurring in the exhausted liquid phase after biomass pretreatment and subsequent dark and photo fermentation processes are considered as value-added by products. The most valuable are furfural (FF), 5-hydroxymethylfurfural (HMF), and levulinic acid (LA). Enriching their solutions can be carried with the application of liquid-liquid extraction with the use of a suitable solvent. In these studies, hydrophobic deep eutectic solvents (DESs) were tested as extractants. The screening of 56 DESs was carried out using the Conductor-like Screening Model for Real Solvents (COSMO-RS). DESs which exposed the highest inhibitory effect on fermentation and negligible water solubility were prepared. The LA, FF, and HMF were analyzed using FT-IR and NMR spectroscopy. In addition, the basic physicochemical properties of DES were carefully studied. In the second part of the paper, deep eutectic solvents were used for the extraction of FF, LA, and HMF from post-fermentation broth (PFB). The main extraction parameters, i.e., temperature, pH, and DES: PFB volume ratio (VDES:VPFB), were optimized by means of a Box-Behnken design model. Two approaches have been proposed for extraction process. In the first approach, DES was used as a solvent. In the second, one of the DES components was added to the sample, and DES was generated in situ. To enhance the post-fermentation broth management, optimization of the parameters promoting HMF, FF, and LA extraction was carried under real conditions. Moreover, the antimicrobial effect of the extraction of FF, HMF, and LA was investigated to define the possibility of simultaneous separation of microbial parts and denatured peptides via precipitation.


Subject(s)
Deep Eutectic Solvents , Fermentation , Hydrophobic and Hydrophilic Interactions , Liquid-Liquid Extraction , Furaldehyde/analogs & derivatives , Furaldehyde/chemistry , Furaldehyde/isolation & purification , Green Chemistry Technology , Hydrogen Bonding , Levulinic Acids/chemistry , Levulinic Acids/isolation & purification , Liquid-Liquid Extraction/methods , Molecular Structure , Solubility , Spectrum Analysis
7.
Materials (Basel) ; 13(8)2020 Apr 17.
Article in English | MEDLINE | ID: mdl-32316513

ABSTRACT

The paper presents the preparation of new adsorbents based on silica gel (SiO2) impregnated with deep eutectic solvents (DESs) to increase benzene, toluene, ethylbenzene, and p-xylene (BTEX) adsorption efficiency from gas streams. The DESs were synthesized by means of choline chloride, tetrapropylammonium bromide, levulinic acid, lactic acid, and phenol. The physico-chemical properties of new sorbent materials, including surface morphology and structures, as well as porosity, were studied by means of thermogravimetric analysis, Fourier transform infrared spectroscopy, scanning electron microscopy, X-ray diffraction, and Brunauer-Emmett-Teller analysis. The effect of DESs type, flow rate, and initial concentration of BTEX were also investigated followed by regeneration and reusability of adsorbents. The results indicate that SiO2 impregnated with tetrapropylammonium bromide and lactic acid in a 1:2 molar ratio have great potential for the removal of BTEX from gas streams. Its adsorption capacity was higher than the pure SiO2 and other developed SiO2-DES adsorbents. This result can be explained by the specific interaction between DESs and BTEX, i.e., hydrogen bonds interaction.

8.
Molecules ; 23(11)2018 Nov 20.
Article in English | MEDLINE | ID: mdl-30463326

ABSTRACT

The need to pre-treat lignocellulosic biomass prior to dark fermentation results primarily from the composition of lignocellulose because lignin hinders the processing of hard wood towards useful products. Hence, in this work a two-step approach for the pre-treatment of energy poplar, including alkaline pre-treatment and enzymatic saccharification followed by fermentation has been studied. Monoethanolamine (MEA) was used as the alkaline catalyst and diatomite immobilized bed enzymes were used during saccharification. The response surface methodology (RSM) method was used to determine the optimal alkaline pre-treatment conditions resulting in the highest values of both total released sugars (TRS) yield and degree of lignin removal. Three variable parameters (temperature, MEA concentration, time) were selected to optimize the alkaline pre-treatment conditions. The research was carried out using the Box-Behnken design. Additionally, the possibility of the re-use of both alkaline as well as enzymatic reagents was investigated. Obtained hydrolysates were subjected to dark fermentation in batch reactors performed by Enterobacter aerogenes ATCC 13048 with a final result of 22.99 mL H2/g energy poplar (0.6 mol H2/mol TRS).


Subject(s)
Enzymes/metabolism , Ethanolamine/chemistry , Hydrogen/metabolism , Populus/chemistry , Batch Cell Culture Techniques , Diatomaceous Earth/chemistry , Enterobacter aerogenes/growth & development , Fermentation , Hydrolysis , Lignin/chemistry , Sucrose/chemistry , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...