Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Insect Sci ; 24(4)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38989842

ABSTRACT

Advances in molecular ecology can overcome many challenges in understanding host-parasitoid interactions. Genetic characterization of the key-players in systems helps to confirm species and identify trophic linkages essential for ecological service delivery by biological control agents; however, relatively few agroecosystems have been explored using this approach. Pecan production consists of a large tree perennial system containing an assortment of seasonal pests and natural enemies. As a first step to characterizing host-parasitoid associations in pecan food webs, we focus on aphid species and their parasitoids. Based on DNA barcoding of field-collected and reared specimens, we confirmed the presence of 3 species of aphid, one family of primary parasitoids, and 5 species of hyperparasitoids. By applying metabarcoding to field-collected aphid mummies, we were able to identify multiple species within each aphid mummy to unravel a complex food web of 3 aphids, 2 primary parasitoids, and upward of 8 hyperparasitoid species. The results of this study demonstrate that multiple hyperparasitoid species attack a single primary parasitoid of pecan aphids, which may have negative consequences for successful aphid biological control. Although further research is needed on a broader spatial scale, our results suggest multiple species exist in this system and may suggest a complex set of interactions between parasitoids, hyperparasitoids, and the 3 aphid species. This was the first time that many of these species have been characterized and demonstrates the application of novel approaches to analyze the aphid-parasitoid food webs in pecans and other tree crop systems.


Subject(s)
Aphids , Food Chain , Host-Parasite Interactions , Animals , Aphids/parasitology , Aphids/genetics , Carya/parasitology , DNA Barcoding, Taxonomic , Wasps/physiology , Wasps/genetics
2.
J Invertebr Pathol ; 203: 108060, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38242200

ABSTRACT

Entomopathogenic nematodes (EPNs) are roundworms that parasitize insects with the aid of symbiotic bacteria. These nematodes have been used both as model organisms and for biological control of pests. The specialized third stage of an EPN, known as an infective juvenile (IJ) must forage to find a host with strategies varying from species to species (cruising, ambushing, and intermediate). Some IJs move more than others to find a host, despite an increased risk of predation and desiccation. This hints at potential underlying benefits (e.g., increased invasion) for EPNs that move more. We assessed whether EPNs that moved farther down a soil column also exhibit higher levels of invasion when compared to nematodes that remained at or near their point of origin. We found that movers in the cruisier and intermediate species: Steinernema riobrave, Heterorhabditis bacteriophora, and H. indica had higher invasion rates compared to their counterparts that did not move. S. carpocapsae, an ambusher, did not exhibit invasion differences between EPNs that moved versus those that did not. For the three cruiser/intermediate EPNs we tested, our results support our hypothesis that EPNs that tend to move more enjoy related benefits such as increased invasion potential. Further studies are required to explore other parameters that may interact with movement. The results of this study can potentially be used to develop EPN strains that move more and invade more, and thus can potentially be more effective biological control agents.


Subject(s)
Moths , Rhabditida , Animals , Larva , Pest Control, Biological/methods , Soil
3.
Environ Entomol ; 50(5): 1045-1055, 2021 10 12.
Article in English | MEDLINE | ID: mdl-34268579

ABSTRACT

Aphids are important pests of pecans in Georgia. Although previous studies conducted seasonal monitoring of pecan aphids, these studies were done at a single experimental site. In addition, only a few seasonal monitoring studies have tracked pecan aphid mummies parasitized by the aphid parasitoid, Aphelinus perpallidus Gahan. The objective of this study was to assess the seasonal phenology of yellow pecan aphid (Monelliopsis pecanis Bissell), blackmargined aphid [Monellia caryella (Fitch)], black pecan aphid [Melanocallis caryaefoliae (Davis)], aphid mummies, and adult A. perpallidus in four Georgia commercial orchards, with varying aphid management regimes, in 2019 and 2020. Comparison of overall aphid and parasitoid numbers between sites revealed few consistent annual patterns in both years. Aphid seasonal trends were consistent among sites and followed the patterns seen in previous studies, with the yellow aphid complex peaking in May, June, September, and October and black pecan aphids peaking in late September and October. Despite varying levels of insecticide application between sites, aphid phenology followed a similar seasonal pattern and remained low, throughout both growing seasons. This may indicate that growers can apply low frequencies of insecticides and still achieve pecan aphid control. Parasitism numbers were highest in the low insecticide frequency site compared with the other three sites. Mummies varied in their correlation with yellow aphid complex and black pecan aphid numbers. Parasitoid numbers typically followed the cycle of their host throughout the season.


Subject(s)
Aphids , Carya , Insecticides , Animals , Georgia , Seasons
4.
Insects ; 12(3)2021 Mar 12.
Article in English | MEDLINE | ID: mdl-33809093

ABSTRACT

Aphids are important pests of pecans. Traditionally, insecticides have been the primary method of management. However, over-reliance and non-judicious use has led to resistance and damage to natural enemy populations. Therefore, frequent assessment of insecticides is necessary in order to monitor resistance development and non-target impacts. Aphicides, flonicamid, sulfoxaflor, and afidopyropen were assessed for their effects on pecan aphids and parasitoid, Aphelinus perpallidus, in a mature pecan orchard in 2019 and 2020. Post-application assessments were performed 7, 14, and 21 days post-application. Leaf samples from non-treated trees had greater aphid numbers than treated trees 7 days post-application with differences diminishing throughout the other two treatment periods in 2019. In 2020, aphid numbers were lower but leaf samples from non-treated trees had more aphids than treated trees 7 days post-application in the lower canopy. These differences again diminished 14 and 21 days post-application. There was no difference among treatments in number of parasitoid adults or mummies. These findings indicate that pecan growers have multiple potential options available for aphid management that do not negatively impact the primary pecan aphid parasitoid. Implications of the results on pecan aphid management are discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...