Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Morphol ; 267(6): 730-8, 2006 Jun.
Article in English | MEDLINE | ID: mdl-16526052

ABSTRACT

Early molecular markers for flatfish metamorphosis and eye migration must be linked to the ethmoid region, the earliest part of the flatfish cranium to change, as well as chondral and dermal ossification processes. Serial sections, morphological landmarks, and stereology were used to determine where and when the remodeling of tissues and asymmetry occurs in the head region of metamorphosing Atlantic halibut, Hippoglossus hippoglossus. Not all parts of the head remodel or migrate, and those that do may be asynchronous. Normal metamorphosis limits the torsion of the Atlantic halibut head to the anterior part of the neurocranium and excludes the tip of the snout and the general jaw area. The first cranial structure displaying eye migration-related asymmetric development is the paraethmoid part of the ethmoid cartilage. In early eye migration the medial frontal process moves apace with the eyes, whereas near completion the migrating eye moves significantly closer to the frontal process. Structures of the jaw remain mostly symmetrical, with the exception of the adductor mandibulae muscle and the bone maxillare, which are larger on the abocular than on the ocular side, the muscle occupying the space vacated by the migration of the eye. Thus, normal eye migration involves a series of temperospatially linked events. In juveniles lacking eye migration (arrested metamorphosis), the dermal bone, the prefrontal, does not develop. The two abnormal paraethmoids develop symmetrically as two plate-like structures curving anteriorly, whereas normal elongate fused paraethmoids curve at their posterior. The abocular side retrorbital vesicles are largest in volume only after the completion of normal eye migration. Factors involved in completion of normal metamorphosis and eye migration in flatfish affect chondral and dermal ossification signals in the ethmoid group, as well as remodeling of the mineralized frontal, a series of linked events not involving the entire neurocranium.


Subject(s)
Eye/growth & development , Facial Asymmetry/embryology , Flounder/anatomy & histology , Metamorphosis, Biological/physiology , Ocular Physiological Phenomena , Regeneration/physiology , Animals , Bone Development/physiology , Cartilage/growth & development , Larva/anatomy & histology , Larva/growth & development , Osteogenesis , Skull/growth & development , Staining and Labeling
2.
Anat Embryol (Berl) ; 211(1): 47-60, 2006 Jan.
Article in English | MEDLINE | ID: mdl-16341547

ABSTRACT

Fish larval development, not least the spectacular process of flatfish metamorphosis, appears to be under complex endocrine control, many aspects of which are still not fully elucidated. In order to obtain data on the functional development of two major endocrine glands, the pituitary and the thyroid, during flatfish metamorphosis, histology, immunohistochemistry and in situ hybridization techniques were applied on larvae of the Atlantic halibut (Hippoglossus hippoglossus), a large, marine flatfish species, from hatching through metamorphosis. The material was obtained from a commercial hatchery. Larval age is defined as day-degrees (D degrees =accumulated daily temperature from hatching). Sporadic thyroid follicles are first detected in larvae at 142 D degrees (27 days post-hatch), prior to the completion of yolk sack absorption. Both the number and activity of the follicles increase markedly after yolk sack absorption and continue to do so during subsequent development. The larval triiodothyronine (T(3)) and thyroxine (T(4)) content increases, subsequent to yolk absorption, and coincides with the proliferation of thyroid follicles. A second increase of both T(3) and T(4) occurs around the start of metamorphosis and the T(3) content further increases at the metamorphic climax. Overall, the T(3) content is lower than T(4). The pituitary gland can first be distinguished as a separate organ at the yolk sack stage. During subsequent development, the gland becomes more elongated and differentiates into neurohypophysis (NH), pars distalis (PD) and pars intermedia (PI). The first sporadic endocrine pituitary cells are observed at the yolk sack stage, somatotrophs (growth hormone producing cells) and somatolactotrophs (somatolactin producing cells) are first observed at 121 D degrees (23 days post-hatch), and lactotrophs (prolactin producing cells) at 134 D degrees (25 days post-hatch). Scarce thyrotrophs are evident after detection of the first thyroid follicles (142 D degrees ), but coincident with a phase in which follicle number and activity increase (260 D degrees ). The somatotrophs are clustered in the medium ventral region of the PD, lactotrophs in the anterior part of the PD and somatolactotrophs are scattered in the mid and posterior region of the pituitary. At around 600 D degrees , coinciding with the start of metamorphosis, somatolactotrophs are restricted to the interdigitating tissue of the NH. During larval development, the pituitary endocrine cells become more numerous. The present data on thyroid development support the notion that thyroid hormones may play a significant role in Atlantic halibut metamorphosis. The time of appearance and the subsequent proliferation of pituitary somatotrophs, lactotrophs, somatolactotrophs and thyrotrophs indicate at which stages of larval development and metamorphosis these endocrine cells may start to play active regulatory roles.


Subject(s)
Flatfishes , Metamorphosis, Biological/physiology , Pituitary Gland/growth & development , Thyroid Gland/growth & development , Animals , Fish Proteins/metabolism , Glycoproteins/metabolism , Growth Hormone/metabolism , Larva/growth & development , Larva/metabolism , Pituitary Gland/anatomy & histology , Pituitary Gland/cytology , Pituitary Hormones/metabolism , Prolactin/metabolism , Thyroid Gland/anatomy & histology , Thyroid Gland/metabolism , Thyrotropin/metabolism , Thyroxine/metabolism , Triiodothyronine/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...