Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
Add more filters










Publication year range
1.
New Phytol ; 243(1): 466-476, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38757753

ABSTRACT

Crops generally have seeds larger than their wild progenitors´ and with reduced dormancy. In wild plants, seed mass and allocation to the seed coat (a proxy for physical dormancy) scale allometrically so that larger seeds tend to allocate less to the coats. Larger seeds and lightweight coats might thus have evolved as correlated traits in crops. We tested whether 34 crops and 22 of their wild progenitors fit the allometry described in the literature, which would indicate co-selection of both traits during crop evolution. Deviations from the allometry would suggest that other evolutionary processes contribute to explain the emergence of larger, lightweight-coated seeds in crops. Crops fitted the scaling slope but deviated from its intercept in a consistent way: Seed coats of crops were lighter than expected by their seed size. The wild progenitors of crops displayed the same trend, indicating that deviations cannot be solely attributed to artificial selection during or after domestication. The evolution of seeds with small coats in crops likely resulted from a combination of various pressures, including the selection of wild progenitors with coats smaller than other wild plants, further decreases during early evolution under cultivation, and indirect selection due to the seed coat-seed size allometry.


Subject(s)
Biological Evolution , Biomass , Crops, Agricultural , Seeds , Crops, Agricultural/growth & development , Crops, Agricultural/anatomy & histology , Crops, Agricultural/physiology , Seeds/growth & development , Seeds/anatomy & histology , Seeds/physiology
2.
Plant J ; 118(6): 2269-2295, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38578789

ABSTRACT

The mature seed in legumes consists of an embryo and seed coat. In contrast to knowledge about the embryo, we know relatively little about the seed coat. We analyzed the gene expression during seed development using a panel of cultivated and wild pea genotypes. Gene co-expression analysis identified gene modules related to seed development, dormancy, and domestication. Oxidoreductase genes were found to be important components of developmental and domestication processes. Proteomic and metabolomic analysis revealed that domestication favored proteins involved in photosynthesis and protein metabolism at the expense of seed defense. Seed coats of wild peas were rich in cell wall-bound metabolites and the protective compounds predominated in their seed coats. Altogether, we have shown that domestication altered pea seed development and modified (mostly reduced) the transcripts along with the protein and metabolite composition of the seed coat, especially the content of the compounds involved in defense. We investigated dynamic profiles of selected identified phenolic and flavonoid metabolites across seed development. These compounds usually deteriorated the palatability and processing of the seeds. Our findings further provide resources to study secondary metabolism and strategies for improving the quality of legume seeds which comprise an important part of the human protein diet.


Subject(s)
Domestication , Gene Expression Regulation, Plant , Pisum sativum , Secondary Metabolism , Seeds , Seeds/genetics , Seeds/metabolism , Seeds/growth & development , Pisum sativum/genetics , Pisum sativum/metabolism , Secondary Metabolism/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Proteomics/methods , Flavonoids/metabolism
3.
Biology (Basel) ; 12(10)2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37887037

ABSTRACT

Over 80% of the global population addresses their primary healthcare needs using traditional medicine based on medicinal plants. Consequently, there's a rising demand for these plants for both household and industrial use at local, regional, national, and international levels. However, wild harvesting has negatively impacted natural ecosystems. Cultivating medicinal species has been proposed as a conservation strategy to alleviate this pressure. Yet, in this age of global climate change concerns, smallholder farmers' views on the benefits of such cultivation clash with the uncertainties of climate change impacts, amplifying their anxieties. In this context, the climate change dependence of ex situ cultivation of ten wild medicinal taxa with significant ethnopharmacological interest in Crete, Greece, were studied, projecting their potential habitat suitability under various future climate scenarios. The results demonstrated species-specific effects. Based on the potential cultivation area gains and losses, these effects can be categorized into three groups. We also outlined the spatial patterns of these gains and losses, offering valuable insights for regional management strategies benefiting individual practitioners.

5.
Int J Mol Sci ; 24(14)2023 Jul 20.
Article in English | MEDLINE | ID: mdl-37511477

ABSTRACT

In celebration of the bicentennial of the birth of Gregor Johann Mendel, the genius of genetics, this Special Issue presents seven papers [...].


Subject(s)
Genetics , History, 19th Century , Genetics/history , Famous Persons
6.
Plants (Basel) ; 12(14)2023 Jul 19.
Article in English | MEDLINE | ID: mdl-37514301

ABSTRACT

The physical dormancy of seeds is likely to be mediated by the chemical composition and the thickness of the seed coat. Here, we investigate the link between the content of phenylpropanoids (i.e., phenolics and flavonoids) present in the chickpea seed coat and dormancy. The relationship between selected phenolic and flavonoid metabolites of chickpea seed coats and dormancy level was assessed using wild and cultivated chickpea parental genotypes and a derived population of recombinant inbred lines (RILs). The selected phenolic and flavonoid metabolites were analyzed via the LC-MS/MS method. Significant differences in the concentration of certain phenolic acids were found among cultivated (Cicer arietinum, ICC4958) and wild chickpea (Cicer reticulatum, PI489777) parental genotypes. These differences were observed in the contents of gallic, caffeic, vanillic, syringic, p-coumaric, salicylic, and sinapic acids, as well as salicylic acid-2-O-ß-d-glucoside and coniferaldehyde. Additionally, significant differences were observed in the flavonoids myricetin, quercetin, luteolin, naringenin, kaempferol, isoorientin, orientin, and isovitexin. When comparing non-dormant and dormant RILs, significant differences were observed in gallic, 3-hydroxybenzoic, syringic, and sinapic acids, as well as the flavonoids quercitrin, quercetin, naringenin, kaempferol, and morin. Phenolic acids were generally more highly concentrated in the wild parental genotype and dormant RILs. We compared the phenylpropanoid content of chickpea seed coats with related legumes, such as pea, lentil, and faba bean. This information could be useful in chickpea breeding programs to reduce dormancy.

9.
Planta ; 258(2): 25, 2023 Jun 23.
Article in English | MEDLINE | ID: mdl-37351659

ABSTRACT

MAIN CONCLUSION: We showed that wild pea seeds contained a more diverse combination of bioactive GAs and had higher ABA content than domesticated peas. Although the role of abscisic acid (ABA) and gibberellins (GAs) interplay has been extensively studied in Arabidopsis and cereals models, comparatively little is known about the effect of domestication on the level of phytohormones in legume seeds. In legumes, as in other crops, seed dormancy has been largely or entirely removed during domestication. In this study, we have measured the endogenous levels of ABA and GAs comparatively between wild and domesticated pea seeds during their development. We have shown that wild seeds contained more ABA than domesticated ones, which could be important for preparing the seeds for the period of dormancy. ABA was catabolised particularly by an 8´-hydroxylation pathway, and dihydrophaseic acid was the main catabolite in seed coats as well as embryos. Besides, the seed coats of wild and pigmented cultivated genotypes were characterised by a broader spectrum of bioactive GAs compared to non-pigmented domesticated seeds. GAs in both seed coat and embryo were synthesized mainly by a 13-hydroxylation pathway, with GA29 being the most abundant in the seed coat and GA20 in the embryos. Measuring seed water content and water loss indicated domesticated pea seeds´ desiccation was slower than that of wild pea seeds. Altogether, we showed that pea domestication led to a change in bioactive GA composition and a lower ABA content during seed development.


Subject(s)
Abscisic Acid , Arabidopsis , Abscisic Acid/metabolism , Gibberellins/metabolism , Pisum sativum/genetics , Pisum sativum/metabolism , Domestication , Germination , Seeds , Plant Dormancy/genetics , Arabidopsis/genetics
11.
Nature ; 615(7953): 652-659, 2023 03.
Article in English | MEDLINE | ID: mdl-36890232

ABSTRACT

Increasing the proportion of locally produced plant protein in currently meat-rich diets could substantially reduce greenhouse gas emissions and loss of biodiversity1. However, plant protein production is hampered by the lack of a cool-season legume equivalent to soybean in agronomic value2. Faba bean (Vicia faba L.) has a high yield potential and is well suited for cultivation in temperate regions, but genomic resources are scarce. Here, we report a high-quality chromosome-scale assembly of the faba bean genome and show that it has expanded to a massive 13 Gb in size through an imbalance between the rates of amplification and elimination of retrotransposons and satellite repeats. Genes and recombination events are evenly dispersed across chromosomes and the gene space is remarkably compact considering the genome size, although with substantial copy number variation driven by tandem duplication. Demonstrating practical application of the genome sequence, we develop a targeted genotyping assay and use high-resolution genome-wide association analysis to dissect the genetic basis of seed size and hilum colour. The resources presented constitute a genomics-based breeding platform for faba bean, enabling breeders and geneticists to accelerate the improvement of sustainable protein production across the Mediterranean, subtropical and northern temperate agroecological zones.


Subject(s)
Crops, Agricultural , Diploidy , Genetic Variation , Genome, Plant , Genomics , Plant Breeding , Plant Proteins , Vicia faba , Chromosomes, Plant/genetics , Crops, Agricultural/genetics , Crops, Agricultural/metabolism , DNA Copy Number Variations/genetics , DNA, Satellite/genetics , Gene Amplification/genetics , Genes, Plant/genetics , Genetic Variation/genetics , Genome, Plant/genetics , Genome-Wide Association Study , Geography , Plant Breeding/methods , Plant Proteins/genetics , Plant Proteins/metabolism , Recombination, Genetic , Retroelements/genetics , Seeds/anatomy & histology , Seeds/genetics , Vicia faba/anatomy & histology , Vicia faba/genetics , Vicia faba/metabolism
14.
Front Plant Sci ; 13: 886162, 2022.
Article in English | MEDLINE | ID: mdl-35783966

ABSTRACT

Alongside the use of fertilizer and chemical control of weeds, pests, and diseases modern breeding has been very successful in generating cultivars that have increased agricultural production several fold in favorable environments. These typically homogeneous cultivars (either homozygous inbreds or hybrids derived from inbred parents) are bred under optimal field conditions and perform well when there is sufficient water and nutrients. However, such optimal conditions are rare globally; indeed, a large proportion of arable land could be considered marginal for agricultural production. Marginal agricultural land typically has poor fertility and/or shallow soil depth, is subject to soil erosion, and often occurs in semi-arid or saline environments. Moreover, these marginal environments are expected to expand with ongoing climate change and progressive degradation of soil and water resources globally. Crop wild relatives (CWRs), most often used in breeding as sources of biotic resistance, often also possess traits adapting them to marginal environments. Wild progenitors have been selected over the course of their evolutionary history to maintain their fitness under a diverse range of stresses. Conversely, modern breeding for broad adaptation has reduced genetic diversity and increased genetic vulnerability to biotic and abiotic challenges. There is potential to exploit genetic heterogeneity, as opposed to genetic uniformity, in breeding for the utilization of marginal lands. This review discusses the adaptive traits that could improve the performance of cultivars in marginal environments and breeding strategies to deploy them.

15.
Plant Cell Physiol ; 63(11): 1554-1572, 2022 Nov 22.
Article in English | MEDLINE | ID: mdl-35713290

ABSTRACT

Crop domestication is a co-evolutionary process that has rendered plants and animals significantly dependent on human interventions for survival and propagation. Grain legumes have played an important role in the development of Neolithic agriculture some 12,000 years ago. Despite being early companions of cereals in the origin and evolution of agriculture, the understanding of grain legume domestication has lagged behind that of cereals. Adapting plants for human use has resulted in distinct morpho-physiological changes between the wild ancestors and domesticates, and this distinction has been the focus of several studies aimed at understanding the domestication process and the genetic diversity bottlenecks created. Growing evidence from research on archeological remains, combined with genetic analysis and the geographical distribution of wild forms, has improved the resolution of the process of domestication, diversification and crop improvement. In this review, we summarize the significance of legume wild relatives as reservoirs of novel genetic variation for crop breeding programs. We describe key legume features, which evolved in response to anthropogenic activities. Here, we highlight how whole genome sequencing and incorporation of omics-level data have expanded our capacity to monitor the genetic changes accompanying these processes. Finally, we present our perspective on alternative routes centered on de novo domestication and re-domestication to impart significant agronomic advances of novel crops over existing commodities. A finely resolved domestication history of grain legumes will uncover future breeding targets to develop modern cultivars enriched with alleles that improve yield, quality and stress tolerance.


Subject(s)
Domestication , Fabaceae , Humans , Edible Grain/genetics , Fabaceae/genetics , Plant Breeding , Crops, Agricultural/genetics
16.
New Phytol ; 235(5): 1807-1821, 2022 09.
Article in English | MEDLINE | ID: mdl-35585778

ABSTRACT

Seed coats serve as protective tissue to the enclosed embryo. As well as mechanical there are also chemical defence functions. During domestication, the property of the seed coat was altered including the removal of the seed dormancy. We used a range of genetic, transcriptomic, proteomic and metabolomic approaches to determine the function of the pea seed polyphenol oxidase (PPO) gene. Sequencing analysis revealed one nucleotide insertion or deletion in the PPO gene, with the functional PPO allele found in all wild pea samples, while most cultivated peas have one of the three nonfunctional ppo alleles. PPO functionality cosegregates with hilum pigmentation. PPO gene and protein expression, as well as enzymatic activity, was downregulated in the seed coats of cultivated peas. The functionality of the PPO gene relates to the oxidation and polymerisation of gallocatechin in the seed coat. Additionally, imaging mass spectrometry supports the hypothesis that hilum pigmentation is conditioned by the presence of both phenolic precursors and sufficient PPO activity. Taken together these results indicate that the nonfunctional polyphenol oxidase gene has been selected during pea domestication, possibly due to better seed palatability or seed coat visual appearance.


Subject(s)
Catechol Oxidase , Pisum sativum , Catechol Oxidase/genetics , Catechol Oxidase/metabolism , Domestication , Pisum sativum/genetics , Pisum sativum/metabolism , Pigmentation , Proteomics , Seeds/genetics , Seeds/metabolism
17.
Talanta ; 242: 123303, 2022 May 15.
Article in English | MEDLINE | ID: mdl-35183978

ABSTRACT

Electronically driven micromanipulation (EDM) with microscopic control was used as a novel tool for sample preparation prior to direct (matrix assisted) laser desorption/ionization mass spectrometric ((MA)LDI-MS) analysis of mature pea seed coat composition in defined layers. Microscissors were used for seed coat fragment shape adjustment, microtweezers for sample holding and "microjackhammer" Milling Pro for precise mechanical removing of cell layers in defined depths (2, 5 or 10 µm). These procedures circumvent the application of embedding media or enzymatic digestion of seed coat that would complicate mass spectra interpretation (presence of matrix signals, analyte signals enhancement or attenuation) and represent alternative for 3D metabolites profiling. In addition, microinjector was used to apply a solution on intact or micropeeled seed coat surface in nano-volumes, i.e. MALDI matrix and/or lithium salt, that provide improvement of signal of sugars. Utilization of EDM enabled optimization of matrix composition on a single small fragment of seed coat overcoming thus problems with biological (seed to seed) variability. LDI-MS data were studied by multivariate statistical analysis and significant metabolites in particular layers of seed coats were identified. Normalized intensities of signals (NS) of long-chain hydroxylated fatty acids (HLFA) on intact dormant pea genotype (JI64) seed coats were significantly higher than in their counterparts treated by micropeeling confirming HLFA accumulation in outermost layers (cutin). Fatty acids distribution differences between dormant and non-dormant genotypes were explored in detail. On the other hand, NS of sugar chains and particular polyphenols were significantly higher in micropeeled seed coats of studied dormant and non-dormant genotypes than in intact seed coats. Furthermore, combination of EDM with mass spectrometry imaging (MSI) allowed vertical profiling of metabolites in hilum (a place of former attachment of seed to maternal plant) and comparison of its composition with surrounding tissues. The obtained results contribute to the understanding of relations between seed coat chemical composition and physical seed dormancy.


Subject(s)
Plant Dormancy , Seeds , Lasers , Micromanipulation , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods
18.
Int J Mol Sci ; 22(9)2021 Apr 27.
Article in English | MEDLINE | ID: mdl-33925728

ABSTRACT

In angiosperms, the mature seed consists of embryo, endosperm, and a maternal plant-derived seed coat (SC). The SC plays a role in seed filling, protects the embryo, mediates dormancy and germination, and facilitates the dispersal of seeds. SC properties have been modified during the domestication process, resulting in the removal of dormancy, mediated by SC impermeability. This study compares the SC anatomy and histochemistry of two wild (JI64 and JI1794) and two domesticated (cv. Cameor and JI92) pea genotypes. Histochemical staining of five developmental stages: 13, 21, 27, 30 days after anthesis (DAA), and mature dry seeds revealed clear differences between both pea types. SC thickness is established early in the development (13 DAA) and is primarily governed by macrosclereid cells. Polyanionic staining by Ruthenium Red indicated non homogeneity of the SC, with a strong signal in the hilum, the micropyle, and the upper parts of the macrosclereids. High peroxidase activity was detected in both wild and cultivated genotypes and increased over the development peaking prior to desiccation. The detailed knowledge of SC anatomy is important for any molecular or biochemical studies, including gene expression and proteomic analysis, especially when comparing different genotypes and treatments. Analysis is useful for other crop-to-wild-progenitor comparisons of economically important legume crops.


Subject(s)
Pisum sativum/genetics , Pisum sativum/metabolism , Seeds/genetics , Domestication , Endosperm , Genotype , Germination , Magnoliopsida/genetics , Magnoliopsida/metabolism , Proteomics , Seeds/metabolism
19.
20.
Appl Plant Sci ; 8(8): e11366, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32995101

ABSTRACT

PREMISE: Seed germination over time is characterized by a sigmoid curve, called a germination curve, in which the percentage (or absolute number) of seeds that have completed germination is plotted against time. A number of individual coefficients have been developed to characterize this germination curve. However, as germination is considered to be a qualitative developmental response of an individual seed that occurs at one time point, but individual seeds within a given treatment respond at different time points, it has proven difficult to develop a single index that satisfactorily incorporates both percentage and rate. The aim of this paper is to develop a new coefficient, the continuous germination index (CGI), which quantifies seed germination as a continuous process, and to compare the CGI with other commonly used indexes. METHODS: To create the new index, the germination curves were smoothed using nondecreasing splines and the CGI was derived as the area under the resulting spline. For the comparison of the CGI with other common indexes, a regression model with functional response was developed. RESULTS: Using both an experimentally obtained wild pea (Pisum sativum subsp. elatius) seed data set and a hypothetical data set, we showed that the CGI is able to characterize the germination process better than most other indices. The CGI captures the local behavior of the germination curves particularly well. DISCUSSION: The CGI can be used advantageously for the characterization of the germination process. Moreover, B-spline coefficients extracted by its construction can be employed for the further statistical processing of germination curves using functional data analysis methods.

SELECTION OF CITATIONS
SEARCH DETAIL
...