Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 8(50): eabq3515, 2022 Dec 14.
Article in English | MEDLINE | ID: mdl-36516257

ABSTRACT

Although individual carbon nanotubes (CNTs) are superior to polymer chains, the mechanical and thermal properties of CNT fibers (CNTFs) remain inferior to synthetic fibers because of the failure of embedding CNTs effectively in superstructures. Conventional techniques resulted in a mild improvement of target properties while degrading others. Here, a double-drawing technique is developed to rearrange the constituent CNTs. Consequently, the mechanical and thermal properties of the resulting CNTFs can simultaneously reach their highest performances with specific strength ~3.30 N tex-1 (4.60 GPa), work of rupture ~70 J g-1, and thermal conductivity ~354 W m-1 K-1 despite starting from low-crystallinity materials (IG:ID ~ 5). The processed CNTFs are more versatile than comparable carbon fiber, Zylon and Dyneema. On the basis of evidence of load transfer efficiency on individual CNTs measured with in situ stretching Raman, we find that the main contributors to property enhancements are the increasing of the effective tube contribution.

2.
Nanoscale Adv ; 3(3): 781-788, 2021 Feb 10.
Article in English | MEDLINE | ID: mdl-36133850

ABSTRACT

Copper nanoparticles (Cu-NPs) represent a viable low-cost alternative to replace bulk copper or other more expensive NPs (e.g. gold or silver) in various applications such as electronics for electrical contact materials or high conductivity materials. This study deals with the synthesis of well dispersed Cu-NPs by using an Ar + H2 microplasma using a solid copper precursor. The morphological analysis is carried out by electron microscopy showing particles with a mean diameter of 8 nm. Crystallinity and chemical analyses were also carried out by X-ray diffraction and X-ray photoelectron spectroscopy, respectively. In the second step, the Cu-NPs were successfully deposited onto porous carbon nanotube ribbons; surface coverage and the penetration depth of the Cu-NPs inside the CNT ribbon structure were investigated as these can be beneficial for a number of applications. The oxidation state of the Cu-NPs was also studied in detail under different conditions.

3.
Small ; 15(27): e1900520, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31120182

ABSTRACT

The agglomeration and self-assembly of gas-phase 1D materials in anthropogenic and natural systems dictate their resulting nanoscale morphology, multiscale hierarchy, and ultimate macroscale properties. Brownian motion induces collisions, upon which 1D materials often restructure to form bundles and can lead to aerogels. Herein, the first results of collision rates for 1D nanomaterials undergoing thermal transport are presented. The Langevin dynamic simulations of nanotube rotation and translation demonstrate that the collision kernels for rigid nanotubes or nanorods are ≈10 times greater than spherical systems. Resulting reduced order equations allow straightforward calculation of the physical parameters to determine the collision kernel for straight and curved 1D materials from 102 to 106 nm length. The collision kernels of curved 1D structures increase ≈1.3 times for long (>102 nm), and ≈5 times for short (≈102 nm) relative to rigid materials. Applications of collision frequencies allow the first kinetic analysis of aerogel self-assembly from gas-phase carbon nanotubes (CNTs). The timescales for CNT collision and bundle formation (0.3-42 s) agree with empirical residence times in CNT reactors (3-15 s). These results provide insights into the CNT length, number, and timescales required for aerogel formation, which bolsters our understanding of mass-produced 1D aerogel materials.

4.
Nanotechnology ; 29(36): 365708, 2018 Sep 07.
Article in English | MEDLINE | ID: mdl-29916810

ABSTRACT

Some assemblies of nanomaterials, like carbon nanotube (CNT) sheet or film, always show outstanding and anisotropic thermal properties. However, there is still a lack of comprehensive thermal conductivity (κ) characterizations on CNT sheets, as well as a lack of estimations of their true contributions on thermal enhancement of polymer composites when used as additives. Always, these characterizations were hindered by the low heat capacity, anisotropic thermal properties or low electrical conductivity of assemblies and their nanocomposites. The transient κ measurement and calculations were also hampered by accurate determination of parameters, like specific heat capacity, density and cross-section, which could be difficult and controversial for nanomaterials, like CNT sheets. Here, to measure anisotropic κ of CNT sheets directly with high fidelity, we modified the conventional steady-state method by measuring under vacuum and by infrared camera, and then comparing temperature profiles on both reference standard material and a CNT sheet sample. The highly anisotropic thermal conductivities of CNT sheets were characterized comprehensively, with κ/ρ in alignment direction as ∼95 mW m2 K-1 kg-1. Furthermore, by comparing the measured thermal properties of different CNT-epoxy resin composites, the heat conduction pathway created by the CNT hierarchical network was demonstrated to remain intact after the in situ polymerization and curing process. The reliable and direct κ measurement rituals used here, dedicated to nanomaterials, will be also essential to assist in assemblies' application to heat dissipation and composite thermal enhancement.

5.
Sci Rep ; 7(1): 14519, 2017 11 06.
Article in English | MEDLINE | ID: mdl-29109427

ABSTRACT

The floating catalyst chemical vapor deposition (FC-CVD) process permits macro-scale assembly of nanoscale materials, enabling continuous production of carbon nanotube (CNT) aerogels. Despite the intensive research in the field, fundamental uncertainties remain regarding how catalyst particle dynamics within the system influence the CNT aerogel formation, thus limiting effective scale-up. While aerogel formation in FC-CVD reactors requires a catalyst (typically iron, Fe) and a promotor (typically sulfur, S), their synergistic roles are not fully understood. This paper presents a paradigm shift in the understanding of the role of S in the process with new experimental studies identifying that S lowers the nucleation barrier of the catalyst nanoparticles. Furthermore, CNT aerogel formation requires a critical threshold of FexCy > 160 mg/m3, but is surprisingly independent of the initial catalyst diameter or number concentration. The robustness of the critical catalyst mass concentration principle is proved further by producing CNTs using alternative catalyst systems; Fe nanoparticles from a plasma spark generator and cobaltocene and nickelocene precursors. This finding provides evidence that low-cost and high throughput CNT aerogel routes may be achieved by decoupled and enhanced catalyst production and control, opening up new possibilities for large-scale CNT synthesis.

6.
Toxicol In Vitro ; 29(7): 1513-28, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26086123

ABSTRACT

The potential toxicity of carbon nanotubes (CNTs) has been compared to pathogenic fibres such as asbestos. It is important to test this hypothesis to ascertain safe methods for CNT production, handling and disposal. In this study aspects reported to contribute to CNT toxicity were assessed: length, aspect ratio, iron content and crystallinity; with responses compared to industrially produced MWCNTs and toxicologically relevant materials such as asbestos. The impacts of these particles on a range of macrophage models in vitro were assessed due to the key role of macrophages in particle clearance and particle/fibre-induced disease. Industrially produced and long MWCNTs were cytotoxic to cells, and were potent in inducing pro-inflammatory and pro-fibrotic immune responses. Short CNTs did not induce any cytotoxicity. Frustrated phagocytosis was most evident in response to long CNTs, as was respiratory burst and reduction in phagocytic ability. Short CNTs, metal content and crystallinity had less or no influence on these endpoints, suggesting that many responses were fibre-length dependent. This study demonstrates that CNTs are potentially pathogenic, as they were routinely found to induce detrimental responses in macrophages greater than those induced by asbestos at the same mass-based dose.


Subject(s)
Macrophages/drug effects , Nanotubes, Carbon/toxicity , Animals , Asbestos, Amosite/toxicity , Bronchoalveolar Lavage Fluid/cytology , Cell Line , Cell Survival/drug effects , Cells, Cultured , Chemokine CCL2/metabolism , Humans , Iron/analysis , Macrophages/metabolism , Macrophages/physiology , Male , Mice , Nanotubes, Carbon/chemistry , Particle Size , Phagocytosis/drug effects , Rats, Sprague-Dawley , Soot/toxicity , Transforming Growth Factor beta1/metabolism , Tumor Necrosis Factor-alpha/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...