Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
J Infect Dis ; 2024 May 02.
Article in English | MEDLINE | ID: mdl-38696336

ABSTRACT

BACKGROUND: Current molecular diagnostics are limited in the number and type of detectable pathogens. Metagenomic next generation sequencing (mNGS) is an emerging, and increasingly feasible, pathogen-agnostic diagnostic approach. Translational barriers prohibit the widespread adoption of this technology in clinical laboratories. We validate an end-to-end mNGS assay for detection of respiratory viruses. Our assay is optimized to reduce turnaround time, lower cost-per-sample, increase throughput, and deploy secure and actionable bioinformatic results. METHODS: We validated our assay using residual nasopharyngeal swab specimens from Vancouver General Hospital (n = 359), RT-PCR-positive, or negative for Influenza, SARS-CoV-2, and RSV. We quantified sample stability, assay precision, the effect of background nucleic acid levels, and analytical limits of detection. Diagnostic performance metrics were estimated. RESULTS: We report that our mNGS assay is highly precise, semi-quantitative, with analytical limits of detection ranging from 103-104 copies/mL. Our assay is highly specific (100%) and sensitive (61.9% Overall: 86.8%; RT-PCR Ct < 30). Multiplexing capabilities enable processing of up to 55-specimens simultaneously on an Oxford Nanopore GridION device, with results reported within 12-hours. CONCLUSIONS: This study outlines the diagnostic performance and feasibility of mNGS for respiratory viral diagnostics, infection control, and public health surveillance. We addressed translational barriers to widespread mNGS adoption.

2.
Biotechniques ; 75(2): 47-55, 2023 08.
Article in English | MEDLINE | ID: mdl-37551834

ABSTRACT

High-throughput total nucleic acid (TNA) purification methods based on solid-phase reversible immobilization (SPRI) beads produce TNA suitable for both genomic and transcriptomic applications. Even so, small RNA species, including miRNA, bind weakly to SPRI beads under standard TNA purification conditions, necessitating a separate workflow using column-based methods that are difficult to automate. Here, an SPRI-based high-throughput TNA purification protocol that recovers DNA, RNA and small RNA, called GSC-modified RLT+ Aline bead-based protocol (GRAB-ALL), which incorporates modifications to enhance small RNA recovery is presented. GRAB-ALL was benchmarked against existing nucleic acid purification workflows and GRAB-ALL efficiently purifies TNA, including small RNA, for next-generation sequencing applications in a plate-based format suitable for automated high-throughput sample preparation.


Subject(s)
DNA , RNA , RNA/genetics , DNA/genetics , High-Throughput Nucleotide Sequencing/methods
3.
Sci Rep ; 13(1): 4241, 2023 03 14.
Article in English | MEDLINE | ID: mdl-36918604

ABSTRACT

As part of the COVID-19 pandemic, clinical laboratories have been faced with massive increases in testing, resulting in sample collection systems, reagent, and staff shortages. We utilized self-collected saline gargle samples to optimize high throughput SARS-CoV-2 multiplex polymerase chain reaction (PCR) testing in order to minimize cost and technologist time. This was achieved through elimination of nucleic acid extraction and automation of sample handling on a widely available robotic liquid handler, Hamilton STARlet. A customized barcode scanning script for reading the sample ID by the Hamilton STARlet's software system was developed to allow primary tube sampling. Use of pre-frozen SARS-CoV-2 assay reaction mixtures reduced assay setup time. In both validation and live testing, the assay produced no false positive or false negative results. Of the 1060 samples tested during validation, 3.6% (39/1060) of samples required retesting as they were either single gene positive, had internal control failure or liquid aspiration error. Although the overall turnaround time was only slightly faster in the automated workflow (185 min vs 200 min), there was a 76% reduction in hands-on time, potentially reducing staff fatigue and burnout. This described process from sample self-collection to automated direct PCR testing significantly reduces the total burden on healthcare systems in terms of human resources and reagent requirements.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/diagnosis , Pandemics , COVID-19 Testing , Specimen Handling , Multiplex Polymerase Chain Reaction , Sensitivity and Specificity , RNA, Viral/analysis
4.
J Appl Lab Med ; 7(5): 1025-1036, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35723286

ABSTRACT

BACKGROUND: To support the implementation of high-throughput pipelines suitable for SARS-CoV-2 sequencing and analysis in a clinical laboratory, we developed an automated sample preparation and analysis workflow. METHODS: We used the established ARTIC protocol with approximately 400 bp amplicons sequenced on Oxford Nanopore's MinION. Sequences were analyzed using Nextclade, assigning both a clade and quality score to each sample. RESULTS: A total of 2179 samples on twenty-five 96-well plates were sequenced. Plates of purified RNA were processed within 12 h, sequencing required up to 24 h, and analysis of each pooled plate required 1 h. The use of samples with known threshold cycle (Ct) values enabled normalization, acted as a quality control check, and revealed a strong correlation between sample Ct values and successful analysis, with 85% of samples with Ct < 30 achieving a "good" Nextclade score. Less abundant samples responded to enrichment with the fraction of Ct > 30 samples achieving a "good" classification rising by 60% after addition of a post-ARTIC PCR normalization. Serial dilutions of 3 variant of concern samples, diluted from approximately Ct = 16 to approximately Ct = 50, demonstrated successful sequencing to Ct = 37. The sample set contained a median of 24 mutations per sample and a total of 1281 unique mutations with reduced sequence read coverage noted in some regions of some samples. A total of 10 separate strains were observed in the sample set, including 3 variants of concern prevalent in British Columbia in the spring of 2021. CONCLUSIONS: We demonstrated a robust automated sequencing pipeline that takes advantage of input Ct values to improve reliability.


Subject(s)
COVID-19 , Nanopore Sequencing , Nanopores , COVID-19/diagnosis , COVID-19/epidemiology , Humans , Reproducibility of Results , SARS-CoV-2/genetics
5.
J Virol Methods ; 299: 114339, 2022 01.
Article in English | MEDLINE | ID: mdl-34687784

ABSTRACT

The COVID-19 pandemic has highlighted the need for generic reagents and flexible systems in diagnostic testing. Magnetic bead-based nucleic acid extraction protocols using 96-well plates on open liquid handlers are readily amenable to meet this need. Here, one such approach is rigorously optimized to minimize cross-well contamination while maintaining sensitivity.


Subject(s)
COVID-19 , Nucleic Acids , COVID-19 Testing , Humans , Indicators and Reagents , Magnetic Phenomena , Pandemics , RNA, Viral/genetics , SARS-CoV-2 , Sensitivity and Specificity
6.
Biotechniques ; 66(2): 85-92, 2019 02.
Article in English | MEDLINE | ID: mdl-30744412

ABSTRACT

The analysis of cell-free circulating tumor DNA (ctDNA) is potentially a less invasive, more dynamic assessment of cancer progression and treatment response than characterizing solid tumor biopsies. Standard isolation methods require separation of plasma by centrifugation, a time-consuming step that complicates automation. To address these limitations, we present an automatable magnetic bead-based ctDNA isolation method that eliminates centrifugation to purify ctDNA directly from peripheral blood (PB). To develop and test our method, ctDNA from cancer patients was purified from PB and plasma. We found that allelic fractions of somatic single-nucleotide variants from target gene capture libraries were comparable, indicating that the PB ctDNA purification method may be a suitable replacement for the plasma-based protocols currently in use.


Subject(s)
Cell-Free Nucleic Acids/blood , Circulating Tumor DNA/blood , High-Throughput Screening Assays/methods , Neoplasms/blood , Biomarkers, Tumor/blood , Biomarkers, Tumor/isolation & purification , Cell-Free Nucleic Acids/isolation & purification , Circulating Tumor DNA/isolation & purification , High-Throughput Nucleotide Sequencing , Humans , Mutation , Neoplasms/genetics
7.
BMC Genomics ; 18(1): 515, 2017 07 05.
Article in English | MEDLINE | ID: mdl-28679365

ABSTRACT

BACKGROUND: RNA-Sequencing (RNA-seq) is now commonly used to reveal quantitative spatiotemporal snapshots of the transcriptome, the structures of transcripts (splice variants and fusions) and landscapes of expressed mutations. However, standard approaches for library construction typically require relatively high amounts of input RNA, are labor intensive, and are time consuming. METHODS: Here, we report the outcome of a systematic effort to optimize and streamline steps in strand-specific RNA-seq library construction. RESULTS: This work has resulted in the identification of an optimized messenger RNA isolation protocol, a potent reverse transcriptase for cDNA synthesis, and an efficient chemistry and a simplified formulation of library construction reagents. We also present an optimization of bead-based purification and size selection designed to maximize the recovery of cDNA fragments. CONCLUSIONS: These developments have allowed us to assemble a rapid high throughput pipeline that produces high quality data from amounts of total RNA as low as 25 ng. While the focus of this study is on RNA-seq sample preparation, some of these developments are also relevant to other next-generation sequencing library types.


Subject(s)
Gene Library , RNA, Messenger , Sequence Analysis, RNA/methods , Specimen Handling/standards , HL-60 Cells , Humans
8.
PLoS One ; 12(6): e0178706, 2017.
Article in English | MEDLINE | ID: mdl-28570594

ABSTRACT

Curation and storage of formalin-fixed, paraffin-embedded (FFPE) samples are standard procedures in hospital pathology laboratories around the world. Many thousands of such samples exist and could be used for next generation sequencing analysis. Retrospective analyses of such samples are important for identifying molecular correlates of carcinogenesis, treatment history and disease outcomes. Two major hurdles in using FFPE material for sequencing are the damaged nature of the nucleic acids and the labor-intensive nature of nucleic acid purification. These limitations and a number of other issues that span multiple steps from nucleic acid purification to library construction are addressed here. We optimized and automated a 96-well magnetic bead-based extraction protocol that can be scaled to large cohorts and is compatible with automation. Using sets of 32 and 91 individual FFPE samples respectively, we generated libraries from 100 ng of total RNA and DNA starting amounts with 95-100% success rate. The use of the resulting RNA in micro-RNA sequencing was also demonstrated. In addition to offering the potential of scalability and rapid throughput, the yield obtained with lower input requirements makes these methods applicable to clinical samples where tissue abundance is limiting.


Subject(s)
Automation , DNA/isolation & purification , Formaldehyde/chemistry , High-Throughput Nucleotide Sequencing , Paraffin Embedding , RNA/isolation & purification , Tissue Fixation/methods , DNA/genetics , RNA/genetics
9.
Nature ; 476(7360): 298-303, 2011 Jul 27.
Article in English | MEDLINE | ID: mdl-21796119

ABSTRACT

Follicular lymphoma (FL) and diffuse large B-cell lymphoma (DLBCL) are the two most common non-Hodgkin lymphomas (NHLs). Here we sequenced tumour and matched normal DNA from 13 DLBCL cases and one FL case to identify genes with mutations in B-cell NHL. We analysed RNA-seq data from these and another 113 NHLs to identify genes with candidate mutations, and then re-sequenced tumour and matched normal DNA from these cases to confirm 109 genes with multiple somatic mutations. Genes with roles in histone modification were frequent targets of somatic mutation. For example, 32% of DLBCL and 89% of FL cases had somatic mutations in MLL2, which encodes a histone methyltransferase, and 11.4% and 13.4% of DLBCL and FL cases, respectively, had mutations in MEF2B, a calcium-regulated gene that cooperates with CREBBP and EP300 in acetylating histones. Our analysis suggests a previously unappreciated disruption of chromatin biology in lymphomagenesis.


Subject(s)
Histones/metabolism , Lymphoma, Non-Hodgkin/genetics , Mutation/genetics , Chromatin/genetics , Chromatin/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Genome, Human/genetics , Histone Acetyltransferases/genetics , Histone Acetyltransferases/metabolism , Histone Methyltransferases , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Humans , Loss of Heterozygosity/genetics , Lymphoma, Follicular/enzymology , Lymphoma, Follicular/genetics , Lymphoma, Large B-Cell, Diffuse/enzymology , Lymphoma, Large B-Cell, Diffuse/genetics , Lymphoma, Non-Hodgkin/enzymology , MADS Domain Proteins/genetics , MADS Domain Proteins/metabolism , MEF2 Transcription Factors , Myogenic Regulatory Factors/genetics , Myogenic Regulatory Factors/metabolism , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism
10.
Nat Genet ; 42(2): 181-5, 2010 Feb.
Article in English | MEDLINE | ID: mdl-20081860

ABSTRACT

Follicular lymphoma (FL) and the GCB subtype of diffuse large B-cell lymphoma (DLBCL) derive from germinal center B cells. Targeted resequencing studies have revealed mutations in various genes encoding proteins in the NF-kappaB pathway that contribute to the activated B-cell (ABC) DLBCL subtype, but thus far few GCB-specific mutations have been identified. Here we report recurrent somatic mutations affecting the polycomb-group oncogene EZH2, which encodes a histone methyltransferase responsible for trimethylating Lys27 of histone H3 (H3K27). After the recent discovery of mutations in KDM6A (UTX), which encodes the histone H3K27me3 demethylase UTX, in several cancer types, EZH2 is the second histone methyltransferase gene found to be mutated in cancer. These mutations, which result in the replacement of a single tyrosine in the SET domain of the EZH2 protein (Tyr641), occur in 21.7% of GCB DLBCLs and 7.2% of FLs and are absent from ABC DLBCLs. Our data are consistent with the notion that EZH2 proteins with mutant Tyr641 have reduced enzymatic activity in vitro.


Subject(s)
DNA-Binding Proteins/genetics , Germinal Center/metabolism , Germinal Center/pathology , Lymphoma, Follicular/genetics , Lymphoma, Large B-Cell, Diffuse/genetics , Lymphoma, Large B-Cell, Diffuse/pathology , Mutation/genetics , Transcription Factors/genetics , Adult , Aged , Amino Acid Sequence , Base Sequence , DNA Mutational Analysis , DNA-Binding Proteins/chemistry , Enhancer of Zeste Homolog 2 Protein , Exons/genetics , Female , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Genome, Human/genetics , Humans , Male , Middle Aged , Molecular Sequence Data , Mutant Proteins/chemistry , Mutant Proteins/genetics , Mutant Proteins/metabolism , Polycomb Repressive Complex 2 , Transcription Factors/chemistry , Tyrosine/genetics
11.
Genome Res ; 18(11): 1798-805, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18701636

ABSTRACT

Propagation of heterologous DNA in E. coli host cells is central to molecular biology. DNA constructs are often engineered for expression of recombinant protein in E. coli, but the extent of incidental transcription arising from natural regulatory sequences in cloned DNA remains underexplored. Here, we have used programmable microarrays and RT-PCR to measure, comprehensively, the transcription of H. influenzae, P. aeruginosa, and human DNA propagating in E. coli as bacterial artificial chromosomes. We find evidence that at least half of all H. influenzae genes are transcribed in E. coli. Highly transcribed genes are principally involved in energy metabolism, and their proximal promoter regions are significantly enriched with E. coli sigma(70) (also known as RpoD) binding sites. H. influenzae genes acquired from an ancient bacteriophage Mu insertion are also highly transcribed. Compared with H. influenzae, a smaller proportion of P. aeruginosa genes are transcribed in E. coli, and in E. coli there is punctuated transcription of human DNA. The presence of foreign DNA in E. coli disturbs the host transcriptional profile, with expression of the E. coli phage shock protein operon and the flagellar gene cluster being particularly strongly up-regulated. While cross-species transcriptional activation is expected to be enabling for horizontal gene transfer in bacteria, incidental expression of toxic genes can be problematic for DNA cloning. Ongoing characterization of cross-expression will help inform the design of biosynthetic gene clusters and synthetic microbial genomes.


Subject(s)
DNA, Recombinant/genetics , Escherichia coli/genetics , Chromosomes, Artificial, Bacterial/genetics , DNA, Bacterial/genetics , DNA-Directed RNA Polymerases/genetics , Gene Expression Profiling , Gene Transfer, Horizontal , Genes, Bacterial , Genetic Engineering , Haemophilus influenzae/genetics , Humans , Multigene Family , Oligonucleotide Array Sequence Analysis , Promoter Regions, Genetic , Pseudomonas aeruginosa/genetics , Reverse Transcriptase Polymerase Chain Reaction , Sigma Factor/genetics , Species Specificity , Transcription, Genetic
12.
Bioessays ; 29(6): 580-90, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17508395

ABSTRACT

Engineered microbes are of great potential utility in biotechnology and basic research. In principle, a cell can be built from scratch by assembling small molecule sets with auto-catalytic properties. Alternatively, DNA can be isolated or directly synthesized and molded into a synthetic genome using existing genomic blueprints and molecular biology tools. Activating such a synthetic genome will yield a synthetic cell. Here we examine obstacles associated with this latter approach using a model system whereby a donor genome from H. influenzae is fragmented, and the pieces are then modified and reassembled stepwise in an E. coli host cell. There are obstacles associated with this strategy related to DNA transfer, DNA replication, cross-talk in gene regulation and compatibility of gene products between donor and host. Encouragingly, analysis of gene expression indicates widespread transcription of H. influenzae genes in E. coli, and analysis of gap locations in H. influenzae and other microbial genome assemblies reveals few genes routinely incompatible with E. coli. In conclusion, rebuilding and booting a genome remains a feasible and pragmatic approach to creating a synthetic microbial cell.


Subject(s)
Escherichia coli/genetics , Genome, Bacterial , Haemophilus influenzae/genetics , Gene Expression Regulation, Bacterial , Models, Genetic , Molecular Sequence Data
13.
Plant J ; 50(6): 1063-78, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17488239

ABSTRACT

As part of a larger project to sequence the Populus genome and generate genomic resources for this emerging model tree, we constructed a physical map of the Populus genome, representing one of the few such maps of an undomesticated, highly heterozygous plant species. The physical map, consisting of 2802 contigs, was constructed from fingerprinted bacterial artificial chromosome (BAC) clones. The map represents approximately 9.4-fold coverage of the Populus genome, which has been estimated from the genome sequence assembly to be 485 +/- 10 Mb in size. BAC ends were sequenced to assist long-range assembly of whole-genome shotgun sequence scaffolds and to anchor the physical map to the genome sequence. Simple sequence repeat-based markers were derived from the end sequences and used to initiate integration of the BAC and genetic maps. A total of 2411 physical map contigs, representing 97% of all clones assigned to contigs, were aligned to the sequence assembly (JGI Populus trichocarpa, version 1.0). These alignments represent a total coverage of 384 Mb (79%) of the entire poplar sequence assembly and 295 Mb (96%) of linkage group sequence assemblies. A striking result of the physical map contig alignments to the sequence assembly was the co-localization of multiple contigs across numerous regions of the 19 linkage groups. Targeted sequencing of BAC clones and genetic analysis in a small number of representative regions showed that these co-aligning contigs represent distinct haplotypes in the heterozygous individual sequenced, and revealed the nature of these haplotype sequence differences.


Subject(s)
Genome, Plant , Physical Chromosome Mapping , Populus/genetics , Chromosomes, Artificial, Bacterial , Haplotypes , Minisatellite Repeats , Polymorphism, Genetic , Sequence Alignment , Sequence Analysis, DNA
14.
Mol Plant Pathol ; 8(4): 451-67, 2007 Jul.
Article in English | MEDLINE | ID: mdl-20507513

ABSTRACT

SUMMARY: Thirteen cDNA libraries constructed from small amounts of leaf rust mRNA using optimized methods served as the source for the generation of 25 558 high-quality DNA sequence reads. Five life-cycle stages were sampled: resting urediniospores, urediniospores germinated over water or plant extract, compatible, interactive stages during appressorium or haustorium formation just before sporulation, and an incompatible interaction. mRNA populations were subjected to treatments such as full-length cDNA production, subtractive and normalizing hybridizations, and size selection methods combined with PCR amplification. Pathogen and host sequences from interactive libraries were differentiated in silico using cereal and fungal sequences, codon usage analyses, and by means of a partial prototype cDNA microarray hybridized with genomic DNAs. This yielded a non-redundant unigene set of 9760 putative fungal sequences consisting of 6616 singlets and 3144 contigs, representing 4.7 Mbp. At an E-value 10(-5), 3670 unigenes (38%) matched sequences in various databases and collections but only 694 unigenes (7%) were similar to genes with known functions. In total, 296 unigenes were identified as most probably wheat and ten as rRNA sequences. Annotation rates were low for germinated urediniospores (4%) and appressoria (2%). Gene sets obtained from the various life-cycle stages appear to be remarkably different, suggesting drastic reprogramming of the transcriptome during these major differentiation processes. Redundancy within contigs yielded information about possible expression levels of certain genes among stages. Many sequences were similar to genes from other rusts such as Uromyces and Melampsora species; some of these genes have been implicated in pathogenicity and virulence.

15.
Syst Synth Biol ; 1(3): 139-44, 2007 Aug.
Article in English | MEDLINE | ID: mdl-19003448

ABSTRACT

Methods for constructing large contiguous segments of DNA will be enabling for Synthetic Biology, where the assembly of genes encoding circuits, biosynthetic pathways or even whole microbial organisms is of interest. Currently, in vitro approaches to DNA synthesis are adequate for generating DNAs that are up to 10s of kbp in length, and in vivo recombination strategies are more suitable for building DNA constructs that are 100 kbp or larger. We have developed a vector system for efficient assembly of large DNA molecules by iterative in vivo recombination of fosmid clones. Two custom fosmid vectors have been built, pFOSAMP and pFOSKAN, that support antibiotic switching. Using this technique we rebuilt two non-contiguous regions of the Haemophilus influenzae genome as episomes in recombinogenic Escherichia coli host cells. These regions together comprise190 kbp, or 10.4% of the H. influenze genome.

16.
Proc Natl Acad Sci U S A ; 103(42): 15582-7, 2006 Oct 17.
Article in English | MEDLINE | ID: mdl-17030794

ABSTRACT

Rhodococcus sp. RHA1 (RHA1) is a potent polychlorinated biphenyl-degrading soil actinomycete that catabolizes a wide range of compounds and represents a genus of considerable industrial interest. RHA1 has one of the largest bacterial genomes sequenced to date, comprising 9,702,737 bp (67% G+C) arranged in a linear chromosome and three linear plasmids. A targeted insertion methodology was developed to determine the telomeric sequences. RHA1's 9,145 predicted protein-encoding genes are exceptionally rich in oxygenases (203) and ligases (192). Many of the oxygenases occur in the numerous pathways predicted to degrade aromatic compounds (30) or steroids (4). RHA1 also contains 24 nonribosomal peptide synthase genes, six of which exceed 25 kbp, and seven polyketide synthase genes, providing evidence that rhodococci harbor an extensive secondary metabolism. Among sequenced genomes, RHA1 is most similar to those of nocardial and mycobacterial strains. The genome contains few recent gene duplications. Moreover, three different analyses indicate that RHA1 has acquired fewer genes by recent horizontal transfer than most bacteria characterized to date and far fewer than Burkholderia xenovorans LB400, whose genome size and catabolic versatility rival those of RHA1. RHA1 and LB400 thus appear to demonstrate that ecologically similar bacteria can evolve large genomes by different means. Overall, RHA1 appears to have evolved to simultaneously catabolize a diverse range of plant-derived compounds in an O(2)-rich environment. In addition to establishing RHA1 as an important model for studying actinomycete physiology, this study provides critical insights that facilitate the exploitation of these industrially important microorganisms.


Subject(s)
Bacterial Proteins , Genome, Bacterial , Metabolism , Rhodococcus , Bacterial Proteins/classification , Bacterial Proteins/genetics , Biological Evolution , Chromosome Mapping , Molecular Sequence Data , Phylogeny , Rhodococcus/genetics , Rhodococcus/metabolism
17.
Genome Res ; 16(6): 796-803, 2006 Jun.
Article in English | MEDLINE | ID: mdl-16672307

ABSTRACT

Sequencing of full-insert clones from full-length cDNA libraries from both Xenopus laevis and Xenopus tropicalis has been ongoing as part of the Xenopus Gene Collection Initiative. Here we present 10,967 full ORF verified cDNA clones (8049 from X. laevis and 2918 from X. tropicalis) as a community resource. Because the genome of X. laevis, but not X. tropicalis, has undergone allotetraploidization, comparison of coding sequences from these two clawed (pipid) frogs provides a unique angle for exploring the molecular evolution of duplicate genes. Within our clone set, we have identified 445 gene trios, each comprised of an allotetraploidization-derived X. laevis gene pair and their shared X. tropicalis ortholog. Pairwise dN/dS, comparisons within trios show strong evidence for purifying selection acting on all three members. However, dN/dS ratios between X. laevis gene pairs are elevated relative to their X. tropicalis ortholog. This difference is highly significant and indicates an overall relaxation of selective pressures on duplicated gene pairs. We have found that the paralogs that have been lost since the tetraploidization event are enriched for several molecular functions, but have found no such enrichment in the extant paralogs. Approximately 14% of the paralogous pairs analyzed here also show differential expression indicative of subfunctionalization.


Subject(s)
Base Sequence , Gene Library , Polyploidy , Xenopus laevis/genetics , Xenopus/genetics , Animals , Evolution, Molecular , Gene Expression , Genes, Duplicate , Genome , Molecular Sequence Data , Open Reading Frames/genetics , Phylogeny , Sequence Homology, Nucleic Acid
18.
BMC Genomics ; 7: 73, 2006 Apr 04.
Article in English | MEDLINE | ID: mdl-16595017

ABSTRACT

BACKGROUND: Cre-loxP recombination refers to the process of site-specific recombination mediated by two loxP sequences and the Cre recombinase protein. Transgenic experiments exploit integrative recombination, where a donor plasmid carrying a loxP site and DNA of interest integrate into a recipient loxP site in a target genome. Unfortunately, integrative recombination is highly inefficient because the insert is flanked by two loxP sites, which themselves become targets for Cre and lead to subsequent excision of the insert. A small number of mutations have been discovered in parts of the loxP sequence, specifically the spacer and inverted repeat segments, that increase the efficiency of integrative recombination. In this study we introduce a high-throughput in vitro assay to rapidly detect novel loxP spacer mutants and describe the sequence characteristics of successful recombinants. RESULTS: We created synthetic loxP oligonucleotides that contained a combination of inverted repeat mutations (the lox66 and lox71 mutations) and mutant spacer sequences, degenerate at 6 of the 8 positions. After in vitro Cre recombination, 3,124 recombinant clones were identified by sequencing. Included in this set were 31 unique, novel, self-recombining sequences. Using network visualization tools, we recognized 12 spacer sets with restricted promiscuity. We observed that increased guanine content at all spacer positions save for position 8 resulted in increased recombination. Interestingly, recombination between identical spacers was not preferred over non-identical spacers. We also identified a set of 16 pairs of loxP spacers that reacted at least twice with another spacer, but not themselves. Further, neither the wild-type P1 phage loxP sequence nor any of the known loxP spacer mutants appeared to be kinetically favoured by Cre recombinase. CONCLUSION: This study approached loxP spacer mutant screening in an unbiased manner, assuming nothing about candidate loxP sites save for the conserved 4 and 5 spacer positions. Candidate sites were free to recombine with any other sequence in the pool of all possible sites. The subset of loxP sites identified here are candidates for in vivo serial recombination as they have already demonstrated limited promiscuity with other loxP spacer and stability in the presence of Cre.


Subject(s)
Integrases/genetics , Recombination, Genetic , Viral Proteins/genetics , Bacteriophage P1/genetics , Base Sequence , DNA/genetics , Gene Library , Genomics , Kinetics , Models, Genetic , Molecular Sequence Data , Mutation , Oligonucleotides/genetics , Plasmids/metabolism , Sequence Homology, Nucleic Acid
19.
Proc Natl Acad Sci U S A ; 102(51): 18485-90, 2005 Dec 20.
Article in English | MEDLINE | ID: mdl-16352711

ABSTRACT

We analyzed 8.55 million LongSAGE tags generated from 72 libraries. Each LongSAGE library was prepared from a different mouse tissue. Analysis of the data revealed extensive overlap with existing gene data sets and evidence for the existence of approximately 24,000 previously undescribed genomic loci. The visual cortex, pancreas, mammary gland, preimplantation embryo, and placenta contain the largest number of differentially expressed transcripts, 25% of which are previously undescribed loci.


Subject(s)
Gene Expression Profiling , Gene Expression Regulation, Developmental/genetics , Mice, Inbred C57BL/genetics , Mice/genetics , Alternative Splicing/genetics , Animals , Multigene Family/genetics , RNA, Untranslated/genetics , Reproducibility of Results , Transcription, Genetic/genetics
20.
Genome Res ; 15(10): 1447-50, 2005 Oct.
Article in English | MEDLINE | ID: mdl-16169928

ABSTRACT

We have developed high-throughput DNA sequencing methods that generate high quality data from reactions as small as 400 nL, providing an approximate order of magnitude reduction in reagent use relative to standard protocols. Sequencing of clones from plasmid, fosmid, and BAC libraries yielded read lengths (PHRED20 bases) of 765 +/- 172 (n = 10,272), 621 +/- 201 (n = 1824), and 647 +/- 189 (n = 568), respectively. Implementation of these procedures at high-throughput genome centers could have a substantial impact on the amount of data that can be generated per unit cost.


Subject(s)
Sequence Analysis, DNA/methods , Nanotechnology
SELECTION OF CITATIONS
SEARCH DETAIL
...