Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Anat Rec (Hoboken) ; 307(4): 1271-1299, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38206046

ABSTRACT

The Late Triassic Dockum Group in northwestern Texas preserves a rich diversity of pseudosuchian taxa, particularly of aetosaurs. In this contribution, we present Garzapelta muelleri gen. et sp. nov., a new aetosaur from the Late Triassic middle Cooper Canyon Formation (latest Adamanian-earliest Revueltian teilzones) in Garza County, Texas, based on an associated specimen that preserves a significant portion of its dorsal carapace. The carapace of G. muelleri exhibits a striking degree of similarity between that of the paratypothoracin Rioarribasuchus chamaensis and desmatosuchins. We quantitatively assessed the relationships of G. muelleri using several iterations of the matrix. Scoring the paramedian and lateral osteoderms of G. muelleri independently results in conflicting topologies. Thus, it is evident that our current matrix is limited in its ability to discern the convergence within this new taxon and that our current character lists are not fully accounting for the morphological disparity of the aetosaurian carapace. Qualitative comparisons suggest that G. muelleri is a Rioarribasuchus-like paratypothoracin with lateral osteoderms that are convergent with those of desmatosuchins. Although the shape of the dorsal eminence, and the presence of a dorsal flange that is rectangular and proportionately longer than the lateral flange are desmatosuchin-like features of G. muelleri, the taxon does not exhibit the articulation style between the paramedian and lateral osteoderms which diagnose the Desmatosuchini (i.e., a rigid interlocking contact, and an anteromedial edge of the lateral osteoderm that overlaps the adjacent paramedian osteoderm).


Subject(s)
Animal Shells , Fossils , Animals , Phylogeny , Texas
2.
Anat Rec (Hoboken) ; 307(4): 1421-1441, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38071453

ABSTRACT

Libognathus sheddi, a leptopleuronine procolophonid from the Upper Triassic Cooper Canyon Formation, Dockum Group, West Texas, was based on an isolated left dentary and partial coronoid. New material referable to Libognathus sheddi, from the Cooper Canyon Formation, provides new information on the cranial anatomy. This new cranial material includes the antorbital portion of a skull, a left maxilla and premaxilla, quadratojugals, and dentaries, including intact tooth rows in the upper and lower jaws. Libognathus shows autapomorphies including; dentary deep with ventral margin oblique to tooth row immediately from the symphysis at ≥23°; anterior projecting coronoid contacting the lingual surface of the dentary underlying the last two dentary teeth; reduced contact between the lacrimal and the nasal; suborbital foramen formed by the maxilla and ectopterygoid, excluding the palatine; a posterior supralabial foramen shared by the maxilla and jugal; a Y-shaped antorbital pillar formed by the palatine, and massive orbitonasale and facial foramina (shared with unnamed southwest USA leptopleuronines). Phylogenetic analysis indicates that Libognathus is a highly derived leptopleuronine procolophonid, closely related to Hypsognathus fenneri and other southwest USA Revueltian leptopleuronines, which fall out as sister taxa to Hypsognathus, a relationship supported by a maxillary dentition restricted anterior to the orbital margin, a possibly synapomorphic orbitonasale septum in the form of an "antorbital pillar" created by the palatine, an anteroventral process of the jugal, and the presence of a small diastema between the first dentary tooth and the more posterior dentition. Libognathus exhibits a possible ankylosed protothecodont tooth implantation with frequent replacement, differing from some other proposed procolophonid implantation and replacement models. Chinle Formation and Dockum Group leptopleuronines are restricted to the Revueltian teilzone/holochronozone, making them possible Revueltian index taxa.


Subject(s)
Fossils , Skull , Phylogeny , Texas , Skull/anatomy & histology , Maxilla/anatomy & histology
3.
PeerJ ; 7: e7551, 2019.
Article in English | MEDLINE | ID: mdl-31534843

ABSTRACT

The "red siltstone" member of the Upper Triassic Chinle Formation in the Eagle Basin of Colorado contains a diverse assemblage of dinosauromorphs falling outside of Dinosauria. This assemblage is the northernmost known occurrence of non-dinosaurian dinosauromorphs in North America, and probably falls within the Revueltian land vertebrate estimated biochronozone (215-207 Ma, middle to late Norian). Lagerpetids are represented by proximal femora and a humerus referable to Dromomeron romeri. Silesaurids (non-dinosaurian dinosauriforms) are the most commonly recovered dinosauromorph elements, consisting of dentaries, maxillae, isolated teeth, humeri, illia, femora, and possibly a scapula and tibiae. These elements represent a new silesaurid, Kwanasaurus williamparkeri, gen. et sp. nov., which possesses several autapomorphies: a short, very robust maxilla with a broad ascending process, a massive ventromedial process, a complex articular surface for the lacrimal and jugal, and 12 teeth; 14 dentary teeth; an ilium with an elongate and blade-like preacetabular process and concave acetabular margin; a femur with an extremely thin medial distal condyle and a depression on the distal end anterior to the crista tibiofibularis. The recognition of K. williamparkeri further demonstrates the predominantly Late Triassic diversity and widespread geographic distribution across Pangea of the sister clade to Asilisaurus, here named Sulcimentisauria. Silesaurid dentition suggests a variety of dietary specializations from faunivory and omnivory in the Middle Triassic and early Late Triassic (Carnian), to herbivory in the Late Triassic (Carnian and Norian), with the latter specialization possibly coinciding with the radiation of Sulcimentisauria across Pangea. The extremely robust maxilla and folidont teeth of K. williamparkei may represent a strong herbivorous dietary specialization among silesaurids.

4.
Nat Ecol Evol ; 3(2): 200-206, 2019 02.
Article in English | MEDLINE | ID: mdl-30664698

ABSTRACT

The Carboniferous-Permian transition (CPT) was Earth's last pre-Quaternary icehouse-greenhouse transition, recording major shifts in late Palaeozoic climate regimes and increased continental seasonality over approximately 40 Myr. Its parallels to Quaternary climate change have inspired recent investigations into the impacts of purported rainforest collapse on palaeotropical vertebrate diversity, but little is known about how the protracted spatial dynamics of this transition impacted the emergence of modern tetrapod lineages. Here, we apply ecological ordinance analyses on a dataset of 286 CPT fossil vertebrate localities binned across four physiographic regions forming a palaeoequatorial transect. Our results clarify the spatiotemporal expansion of land-living vertebrates, demonstrating that the reduction of tropical wetlands accommodated emerging dryland-adapted amniote faunas from a western Pangaean epicentre. We call this west-east lag the 'Vaughn-Olson model': CPT climatic transitions were regionally diachronous with delayed proliferation of amniote-dominated dryland assemblages in the east. By combining our ecological analyses with a phylogenetic approach, we demonstrate that this pattern also applies to some co-occurring total-group amphibians, suggesting that there was pervasive selection for such dryland adaptations across the crown tetrapod tree, in contrast with stem tetrapods and 'fishes'.


Subject(s)
Animal Distribution , Biodiversity , Biological Evolution , Climate Change , Vertebrates , Animals , Fossils , Paleontology , Rainforest
5.
Proc Natl Acad Sci U S A ; 114(27): E5389-E5395, 2017 07 03.
Article in English | MEDLINE | ID: mdl-28630337

ABSTRACT

The origin of the limbless caecilians remains a lasting question in vertebrate evolution. Molecular phylogenies and morphology support that caecilians are the sister taxon of batrachians (frogs and salamanders), from which they diverged no later than the early Permian. Although recent efforts have discovered new, early members of the batrachian lineage, the record of pre-Cretaceous caecilians is limited to a single species, Eocaecilia micropodia The position of Eocaecilia within tetrapod phylogeny is controversial, as it already acquired the specialized morphology that characterizes modern caecilians by the Jurassic. Here, we report on a small amphibian from the Upper Triassic of Colorado, United States, with a mélange of caecilian synapomorphies and general lissamphibian plesiomorphies. We evaluated its relationships by designing an inclusive phylogenetic analysis that broadly incorporates definitive members of the modern lissamphibian orders and a diversity of extinct temnospondyl amphibians, including stereospondyls. Our results place the taxon confidently within lissamphibians but demonstrate that the diversity of Permian and Triassic stereospondyls also falls within this group. This hypothesis of caecilian origins closes a substantial morphologic and temporal gap and explains the appeal of morphology-based polyphyly hypotheses for the origins of Lissamphibia while reconciling molecular support for the group's monophyly. Stem caecilian morphology reveals a previously unrecognized stepwise acquisition of typical caecilian cranial apomorphies during the Triassic. A major implication is that many Paleozoic total group lissamphibians (i.e., higher temnospondyls, including the stereospondyl subclade) fall within crown Lissamphibia, which must have originated before 315 million years ago.


Subject(s)
Amphibians/physiology , Biological Evolution , Fossils , Amphibians/classification , Animals , Anura , Bayes Theorem , Biodiversity , Colorado , Ecology , Ecosystem , Evolution, Molecular , Imaging, Three-Dimensional , Jaw/anatomy & histology , Monte Carlo Method , Paleontology , Phylogeny , Skull/anatomy & histology , Tomography, X-Ray Computed , Urodela
6.
PLoS One ; 9(9): e108542, 2014.
Article in English | MEDLINE | ID: mdl-25265394

ABSTRACT

Complete, exceptionally-preserved skulls of the Permian lungfish Persephonichthys chthonica gen. et sp. nov. are described. Persephonichthys chthonica is unique among post-Devonian lungfishes in preserving portions of the neurocranium, permitting description of the braincase of a stem-ceratodontiform for the first time. The completeness of P. chthonica permits robust phylogenetic analysis of the relationships of the extant lungfish lineage within the Devonian lungfish diversification for the first time. New analyses of the relationships of this new species within two published matrices using both maximum parsimony and Bayesian inference robustly place P. chthonica and modern lungfishes within dipterid-grade dipnoans rather than within a clade containing Late Devonian 'phaneropleurids' and common Late Paleozoic lungfishes such as Sagenodus. Monophyly of post-Devonian lungfishes is not supported and the Carboniferous-Permian taxon Sagenodus is found to be incidental to the origins of modern lungfishes, suggesting widespread convergence in Late Paleozoic lungfishes. Morphology of the skull, hyoid arch, and pectoral girdle suggests a deviation in feeding mechanics from that of Devonian lungfishes towards the more dynamic gape cycle and more effective buccal pumping seen in modern lungfishes. Similar anatomy observed previously in 'Rhinodipterus' kimberyensis likely represents an intermediate state between the strict durophagy observed in most Devonian lungfishes and the more dynamic buccal pump seen in Persephonichthys and modern lungfishes, rather than adaptation to air-breathing exclusively.


Subject(s)
Fishes/anatomy & histology , Fishes/classification , Fossils/anatomy & histology , Skull/anatomy & histology , Animals , Nebraska , Paleontology , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL
...