Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Phytopathology ; 110(4): 708-722, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31821114

ABSTRACT

Effective altruism is an ethical framework for identifying the greatest potential benefits from investments. Here, we apply effective altruism concepts to maximize research benefits through identification of priority stakeholders, pathosystems, and research questions and technologies. Priority stakeholders for research benefits may include smallholder farmers who have not yet attained the minimal standards set out by the United Nations Sustainable Development Goals; these farmers would often have the most to gain from better crop disease management, if their management problems are tractable. In wildlands, prioritization has been based on the risk of extirpating keystone species, protecting ecosystem services, and preserving wild resources of importance to vulnerable people. Pathosystems may be prioritized based on yield and quality loss, and also factors such as whether other researchers would be unlikely to replace the research efforts if efforts were withdrawn, such as in the case of orphan crops and orphan pathosystems. Research products that help build sustainable and resilient systems can be particularly beneficial. The "value of information" from research can be evaluated in epidemic networks and landscapes, to identify priority locations for both benefits to individuals and to constrain regional epidemics. As decision-making becomes more consolidated and more networked in digital agricultural systems, the range of ethical considerations expands. Low-likelihood but high-damage scenarios such as generalist doomsday pathogens may be research priorities because of the extreme potential cost. Regional microbiomes constitute a commons, and avoiding the "tragedy of the microbiome commons" may depend on shifting research products from "common pool goods" to "public goods" or other categories. We provide suggestions for how individual researchers and funders may make altruism-driven research more effective.[Formula: see text] Copyright © 2020 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.


Subject(s)
Altruism , Ecosystem , Agriculture , Crops, Agricultural , Humans , Plant Diseases
2.
Plant Dis ; 98(12): 1666-1670, 2014 Dec.
Article in English | MEDLINE | ID: mdl-30703875

ABSTRACT

During the summers of 2012 and 2013, 39 tomato (Solanum lycopersicum) lines or varieties were evaluated for resistance to late blight in three separate field trials. In each trial, late blight was caused by field isolates of Phytophthora infestans clonal lineage US-23. Varieties with the late blight resistance genes Ph-1, Ph-2, Ph-3, and Ph-2 + Ph-3 were included, along with several heirloom varieties with grower-reported resistance and varieties with no known resistance. All six varieties with Ph-2 + Ph-3, along with NC25P, which is homozygous for Ph-3 only, showed a high level of resistance. Plum Regal F1, which is heterozygous for Ph-3 only, showed moderate resistance. Legend, the only variety with Ph-2 alone, also showed moderate resistance. Three heirloom varieties, Matt's Wild Cherry, Lemon Drop, and Mr. Stripey, showed a high level of resistance comparable with that of varieties with Ph-2 + Ph-3. New Yorker, possessing Ph-1 only, showed no resistance. Indeterminate varieties had significantly less disease than determinate varieties in two of the three trials. Overall, this study suggests that tomato varieties with both Ph-2 and Ph-3 can be used to effectively manage late blight caused by P. infestans clonal lineage US-23. Varieties possessing only Ph-2, or heterozygous for Ph-3, were better protected than those without any late blight resistance but might still require supplemental fungicide applications, while the variety that was homozygous for Ph-3 was highly resistant. Several heirloom varieties were also highly resistant, and the unknown mechanism of their resistance warrants further research. Finally, the plasticity observed in United States P. infestans populations over the past several decades necessitates continued monitoring for genetic changes within P. infestans that could lead to the breakdown of resistance reported here.

3.
Plant Dis ; 97(3): 296-306, 2013 Mar.
Article in English | MEDLINE | ID: mdl-30722376

ABSTRACT

The tomato late blight pandemic of 2009 made late blight into a household term in much of the eastern United States. Many home gardeners and many organic producers lost most if not all of their tomato crop, and their experiences were reported in the mainstream press. Some CSAs (Community Supported Agriculture) could not provide tomatoes to their members. In response, many questions emerged: How did it happen? What was unusual about this event compared to previous late blight epidemics? What is the current situation in 2012 and what can be done? It's easiest to answer these questions, and to understand the recent epidemics of late blight, if one knows a bit of the history of the disease and the biology of the causal agent, Phytophthora infestans.

4.
Plant Dis ; 97(7): 873-881, 2013 Jul.
Article in English | MEDLINE | ID: mdl-30722527

ABSTRACT

Phytophthora infestans, the causal agent of late blight disease, has been reported in the United States and Canada since the mid-nineteenth century. Due to the lack of or very limited sexual reproduction, the populations of P. infestans in the United States are primarily reproducing asexually and, thus, show a simple genetic structure. The emergence of new clonal lineages of P. infestans (US-22, US-23, and US-24) responsible for the late blight epidemics in the northeastern region of the United States in the summers of 2009 and 2010 stimulated an investigation into phenotypic traits associated with these genotypes. Mating type, differences in sensitivity to mefenoxam, differences in pathogenicity on potato and tomato, and differences in rate of germination were studied for clonal lineages US-8, US-22, US-23, and US-24. Both A1 and A2 mating types were detected. Lineages US-22, US-23, and US-24 were generally sensitive to mefenoxam while US-8 was resistant. US-8 and US-24 were primarily pathogenic on potato while US-22 and US-23 were pathogenic on both potato and tomato. Indirect germination was favored at lower temperatures (5 and 10°C) whereas direct germination, though uncommon, was favored at higher temperatures (20 and 25°C). Sporangia of US-24 released zoospores more rapidly than did sporangia of US-22 and US-23. The association of characteristic phenotypic traits with genotype enables the prediction of phenotypic traits from rapid genotypic analyses for improved disease management.

5.
Plant Dis ; 96(6): 881-888, 2012 Jun.
Article in English | MEDLINE | ID: mdl-30727350

ABSTRACT

Fusarium ear rot of maize, caused by Fusarium verticillioides, is an important disease affecting maize production worldwide. Apart from reducing yield and grain quality, F. verticillioides produces fumonisins which have been associated with mycotoxicoses of animals and humans. Currently, no maize breeding lines are known with resistance to F. verticillioides in South Africa. The objective of this study, therefore, was to evaluate 24 genetically diverse maize inbred lines as potential sources of resistance to Fusarium ear rot and fumonisin accumulation in field trials at Potchefstroom and Vaalharts in South Africa. After artificial silk channel inoculation with F. verticillioides, Fusarium ear rot development was determined at harvest and fumonisins B1, B2, and B3 quantified. A significant inbred line by location effect was observed for Fusarium ear rot severity (P ≤ 0.001), although certain lines proved to be consistently resistant across both locations. The individual inbred lines also differed considerably in fumonisin accumulation between Potchefstroom and Vaalharts, with differentiation between susceptible and potentially resistant inbred lines only being possible at Vaalharts. A greenhouse inoculation trial was then also performed on a subset of potentially resistant and highly susceptible lines. The inbred lines CML 390, CML 444, CML 182, VO 617Y-2, and RO 549 W consistently showed a low Fusarium ear rot (<5%) incidence at both Potchefstroom and Vaalharts and in the greenhouse. Two of these inbred lines, CML 390 and CML 444, accumulated fumonisin levels <5 mg kg-1. These lines could potentially act as sources of resistance for use within a maize breeding program.

SELECTION OF CITATIONS
SEARCH DETAIL
...