Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Methods Mol Biol ; 2371: 317-334, 2022.
Article in English | MEDLINE | ID: mdl-34596856

ABSTRACT

Peptide macrocycles possess characteristics that make them ideal as drug candidates, molecular recognition elements, and a variety of other applications involving their unique interactions with proteins. Computational analysis of these peptide macrocycle-protein interactions is useful for elucidating details that help underscore the true differences between peptide macrocycle binding candidates and facilitate the design of improved binders. The following protocol is useful for computational screening and analysis of a series of peptide macrocycle candidates binding to a protein target with a known structure but unknown binding site. It uses readily available open source software and is suitable for High Performance Computing.


Subject(s)
Protein Binding , Binding Sites , Peptides , Proteins , Software
2.
J Comput Aided Mol Des ; 31(4): 349-363, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28190218

ABSTRACT

The majority of computer simulations exploring biomolecular function employ Class I additive force fields (FF), which do not treat polarization explicitly. Accordingly, much effort has been made into developing models that go beyond the additive approximation. Development and optimization of the Drude polarizable FF has yielded parameters for selected lipids, proteins, DNA and a limited number of carbohydrates. The work presented here details parametrization of aliphatic aldehydes and ketones (viz. acetaldehyde, propionaldehyde, butaryaldehyde, isobutaryaldehyde, acetone, and butanone) as well as their associated acyclic sugars (D-allose and D-psicose). LJ parameters are optimized targeting experimental heats of vaporization and molecular volumes, while the electrostatic parameters are optimized targeting QM water interactions, dipole moments, and molecular polarizabilities. Bonded parameters are targeted to both QM and crystal survey values, with the models for ketones and aldehydes shown to be in good agreement with QM and experimental target data. The reported heats of vaporization and molecular volumes represent a compromise between the studied model compounds. Simulations of the model compounds show an increase in the magnitude and the fluctuations of the dipole moments in moving from gas phase to condensed phases, which is a phenomenon that the additive FF is intrinsically unable to reproduce. The result is a polarizable model for aliphatic ketones and aldehydes including the acyclic sugars D-allose and D-psicose, thereby extending the available biomolecules in the Drude polarizable FF.


Subject(s)
Aldehydes/chemistry , Fructose/chemistry , Glucose/chemistry , Ketones/chemistry , Molecular Dynamics Simulation , Static Electricity , Thermodynamics
3.
J Am Chem Soc ; 138(9): 3136-44, 2016 Mar 09.
Article in English | MEDLINE | ID: mdl-26878192

ABSTRACT

Over half of all antibiotics target the bacterial ribosome-nature's complex, 2.5 MDa nanomachine responsible for decoding mRNA and synthesizing proteins. Macrolide antibiotics, exemplified by erythromycin, bind the 50S subunit with nM affinity and inhibit protein synthesis by blocking the passage of nascent oligopeptides. Solithromycin (1), a third-generation semisynthetic macrolide discovered by combinatorial copper-catalyzed click chemistry, was synthesized in situ by incubating either E. coli 70S ribosomes or 50S subunits with macrolide-functionalized azide 2 and 3-ethynylaniline (3) precursors. The ribosome-templated in situ click method was expanded from a binary reaction (i.e., one azide and one alkyne) to a six-component reaction (i.e., azide 2 and five alkynes) and ultimately to a 16-component reaction (i.e., azide 2 and 15 alkynes). The extent of triazole formation correlated with ribosome affinity for the anti (1,4)-regioisomers as revealed by measured Kd values. Computational analysis using the site-identification by ligand competitive saturation (SILCS) approach indicated that the relative affinity of the ligands was associated with the alteration of macrolactone+desosamine-ribosome interactions caused by the different alkynes. Protein synthesis inhibition experiments confirmed the mechanism of action. Evaluation of the minimal inhibitory concentrations (MIC) quantified the potency of the in situ click products and demonstrated the efficacy of this method in the triaging and prioritization of potent antibiotics that target the bacterial ribosome. Cell viability assays in human fibroblasts confirmed 2 and four analogues with therapeutic indices for bactericidal activity over in vitro mammalian cytotoxicity as essentially identical to solithromycin (1).


Subject(s)
Alkynes/chemistry , Anti-Bacterial Agents/chemical synthesis , Azides/chemistry , Macrolides/chemical synthesis , Ribosomes/chemistry , Triazoles/chemical synthesis , Alkynes/pharmacology , Anti-Bacterial Agents/pharmacology , Azides/pharmacology , Click Chemistry , Cycloaddition Reaction , Humans , Macrolides/pharmacology , Models, Molecular , Ribosomes/metabolism , Thermodynamics , Triazoles/pharmacology
4.
ACS Med Chem Lett ; 5(9): 1021-6, 2014 Sep 11.
Article in English | MEDLINE | ID: mdl-25221660

ABSTRACT

Novel sources of antibiotics are needed to address the serious threat of bacterial resistance. Accordingly, we have launched a structure-based drug design program featuring a desmethylation strategy wherein methyl groups have been replaced with hydrogens. Herein we report the total synthesis, molecular modeling, and biological evaluation of 4-desmethyl telithromycin (6), a novel desmethyl analogue of the third-generation ketolide antibiotic telithromycin (2) and our final analogue in this series. While 4-desmethyl telithromycin (6) was found to be equipotent with telithromycin (2) against wild-type bacteria, it was 4-fold less potent against the A2058G mutant. These findings reveal that strategically replacing the C4-methyl group with hydrogen (i.e., desmethylation) did not address this mechanism of resistance. Throughout the desmethyl series, the sequential addition of methyls to the 14-membered macrolactone resulted in improved bioactivity. Molecular modeling methods indicate that changes in conformational flexibility dominate the increased biological activity; moreover, they reveal 6 adopts a different conformation once bound to the A2058G ribosome, thus impacting noncovalent interactions reflected in a lower MIC value. Finally, fluorescence polarization experiments of 6 with E. coli ribosomes confirmed 6 is indeed binding the ribosome.

5.
PLoS Comput Biol ; 9(6): e1003113, 2013.
Article in English | MEDLINE | ID: mdl-23785274

ABSTRACT

Resistance to macrolide antibiotics is conferred by mutation of A2058 to G or methylation by Erm methyltransferases of the exocyclic N6 of A2058 (E. coli numbering) that forms the macrolide binding site in the 50S subunit of the ribosome. Ketolides such as telithromycin mitigate A2058G resistance yet remain susceptible to Erm-based resistance. Molecular details associated with macrolide resistance due to the A2058G mutation and methylation at N6 of A2058 by Erm methyltransferases were investigated using empirical force field-based simulations. To address the buried nature of the macrolide binding site, the number of waters within the pocket was allowed to fluctuate via the use of a Grand Canonical Monte Carlo (GCMC) methodology. The GCMC water insertion/deletion steps were alternated with Molecular Dynamics (MD) simulations to allow for relaxation of the entire system. From this GCMC/MD approach information on the interactions between telithromycin and the 50S ribosome was obtained. In the wild-type (WT) ribosome, the 2'-OH to A2058 N1 hydrogen bond samples short distances with a higher probability, while the effectiveness of telithromycin against the A2058G mutation is explained by a rearrangement of the hydrogen bonding pattern of the 2'-OH to 2058 that maintains the overall antibiotic-ribosome interactions. In both the WT and A2058G mutation there is significant flexibility in telithromycin's imidazole-pyridine side chain (ARM), indicating that entropic effects contribute to the binding affinity. Methylated ribosomes show lower sampling of short 2'-OH to 2058 distances and also demonstrate enhanced G2057-A2058 stacking leading to disrupted A752-U2609 Watson-Crick (WC) interactions as well as hydrogen bonding between telithromycin's ARM and U2609. This information will be of utility in the rational design of novel macrolide analogs with improved activity against methylated A2058 ribosomes.


Subject(s)
Anti-Bacterial Agents/chemistry , Ketolides/chemistry , Molecular Dynamics Simulation , Monte Carlo Method
6.
ACS Med Chem Lett ; 4(11): 1114-1118, 2013 Nov 14.
Article in English | MEDLINE | ID: mdl-24470840

ABSTRACT

Antibiotic-resistant bacteria are emerging at an alarming rate in both hospital and community settings. Motivated by this issue, we have prepared desmethyl (i.e., replacing methyl groups with hydrogens) analogues of third-generation macrolide drugs telithromycin (TEL, 2) and cethromycin (CET, 6), both of which are semi-synthetic derivatives of flagship macrolide antibiotic erythromycin (1). Herein, we report the total synthesis, molecular modeling, and biological evaluation of 4,8,10-tridesmethyl cethromycin (7). In MIC assays, CET analogue 7 was found to be equipotent with TEL (2) against a wild-type E. coli strain, more potent than previously disclosed desmethyl TEL congeners 3, 4, and 5, but fourfold less potent than TEL (2) against a mutant E. coli A2058G strain.

7.
ACS Med Chem Lett ; 3(3): 211-215, 2012 Mar 08.
Article in English | MEDLINE | ID: mdl-22708010

ABSTRACT

Novel sources of antibiotics are required to keep pace with the inevitable onset of bacterial resistance. Continuing with our macrolide desmethylation strategy as a source of new antibiotics, we report the total synthesis, molecular modeling and biological evaluation of 4,10-didesmethyl telithromycin (4), a novel desmethyl analogue of the 3rd-generation drug telithromycin (2). Telithromycin is an FDA-approved ketolide antibiotic derived from erythromycin (1). We found 4,10-didesmethyl telithromycin (4) to be four times more active than previously prepared 4,8,10-tridesmethyl congener (3) in MIC assays. While less potent than telithromycin (2), the inclusion of the C-8 methyl group has improved biological activity suggesting it plays an important role in antibiotic function.

8.
ACS Med Chem Lett ; 3(12): 1013-1018, 2012 Dec 12.
Article in English | MEDLINE | ID: mdl-24015325

ABSTRACT

There is an urgent need for novel sources of antibiotics to address the incessant and inevitable onset of bacterial resistance. To this end, we have initiated a structure-based drug design program that features a desmethylation strategy (i.e., replacing methyl groups with hydrogens). Herein we report the total synthesis, molecular modeling and biological evaluation of 4,8-didesmethyl telithromycin (5), a novel desmethyl analogue of the third-generation ketolide antibiotic telithromycin (2), which is an FDA-approved semisynthetic derivative of erythromycin (1). We found 4,8-didesmethyl telithromycin (5) to be eight times more active than previously prepared 4,8,10-tridesmethyl congener (3) and two times more active than 4,10-didesmethyl regioisomer (4) in MIC assays. While less potent than telithromycin (2) and paralleling the observations made in the previous study of 4,10-didesmethyl analogue (4), the inclusion of a single methyl group improves biological activity thus supporting its role in antibiotic activity.

SELECTION OF CITATIONS
SEARCH DETAIL
...