Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
Add more filters










Publication year range
1.
J Anim Ecol ; 93(3): 348-366, 2024 03.
Article in English | MEDLINE | ID: mdl-38303132

ABSTRACT

Variation in life history traits in animals and plants can often be structured along major axes of life history strategies. The position of a species along these axes can inform on their sensitivity to environmental change. For example, species with slow life histories are found to be less sensitive in their long-term population responses to environmental change than species with fast life histories. This provides a tantalizing link between sets of traits and population responses to change, contained in a highly generalizable theoretical framework. Life history strategies are assumed to reflect the outcome of life history tradeoffs that, by their very nature, act at the individual level. Examples include the tradeoff between current and future reproductive success, and allocating energy into growth versus reproduction. But the importance of such tradeoffs in structuring population-level responses to environmental change remains understudied. We aim to increase our understanding of the link between individual-level life history tradeoffs and the structuring of life history strategies across species, as well as the underlying links to population responses to environmental change. We find that the classical association between lifehistory strategies and population responses to environmental change breaks down when accounting for individual-level tradeoffs and energy allocation. Therefore, projecting population responses to environmental change should not be inferred based only on a limited set of species traits. We summarize our perspective and a way forward in a conceptual framework.


Subject(s)
Life History Traits , Animals , Reproduction/physiology , Plants
2.
Sci Data ; 11(1): 153, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38302570

ABSTRACT

Demographic models are used to explore how life history traits structure life history strategies across species. This study presents the DEBBIES dataset that contains estimates of eight life history traits (length at birth, puberty and maximum length, maximum reproduction rate, fraction energy allocated to respiration versus reproduction, von Bertalanffy growth rate, mortality rates) for 185 ectotherm species. The dataset can be used to parameterise dynamic energy budget integral projection models (DEB-IPMs) to calculate key demographic quantities like population growth rate and demographic resilience, but also link to conservation status or biogeographical characteristics. Our technical validation shows a satisfactory agreement between observed and predicted longevity, generation time, age at maturity across all species. Compared to existing datasets, DEBBIES accommodates (i) easy cross-taxonomical comparisons, (ii) many data-deficient species, and (iii) population forecasts to novel conditions because DEB-IPMs include a mechanistic description of the trade-off between growth and reproduction. This dataset has the potential for biologists to unlock general predictions on ectotherm population responses from only a few key life history traits.


Subject(s)
Life History Traits , Reproduction , Humans , Animals
3.
J Fish Biol ; 104(1): 92-103, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37726231

ABSTRACT

Reef shark species have undergone sharp declines in recent decades, as they inhabit coastal areas, making them an easy target in fisheries (i.e., sharks are exploited globally for their fins, meat, and liver oil) and exposing them to other threats (e.g., being part of by-catch, pollution, and climate change). Reef sharks play a critical role in coral reef ecosystems, where they control populations of smaller predators and herbivorous fishes either directly via predation or indirectly via behavior, thus protecting biodiversity and preventing potential overgrazing of corals. The urgent need to conserve reef shark populations necessitates a multifaceted approach to policy at local, federal, and global levels. However, monitoring programmes to evaluate the efficiency of such policies are lacking due to the difficulty in repeatedly sampling free-ranging, wild shark populations. Over nine consecutive years, we monitored juveniles of the blacktip reef shark (Carcharhinus melanopterus) population around Moorea, French Polynesia, and within the largest shark sanctuary globally, to date. We investigated the roles of spatial (i.e., sampling sites) and temporal variables (i.e., sampling year, season, and month), water temperature, and interspecific competition on shark density across 10 coastal nursery areas. Juvenile C. melanopterus density was found to be stable over 9 years, which may highlight the effectiveness of local and likely federal policies. Two of the 10 nursery areas exhibited higher juvenile shark densities over time, which may have been related to changes in female reproductive behavior or changes in habitat type and resources. Water temperatures did not affect juvenile shark density over time as extreme temperatures proven lethal (i.e., 33°C) in juvenile C. melanopterus might have been tempered by daily variation. The proven efficiency of time-series datasets for reef sharks to identify critical habitats (having the highest juvenile shark densities over time) should be extended to other populations to significantly contribute to the conservation of reef shark species.


Subject(s)
Ecosystem , Sharks , Female , Animals , Coral Reefs , Biodiversity , Water
4.
Ecol Evol ; 12(8): e9145, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35928796

ABSTRACT

Male secondary sexual traits often scale allometrically with body size. These allometries can be variable within species and may shift depending on environmental conditions, such as food quality. Such allometric plasticity has been hypothesized to initiate local adaptation and evolutionary diversification of scaling relationships, but is under-recorded, and its eco-evolutionary effects are not well understood. Here, we tested for allometric plasticity in the bulb mite (Rhizoglyphus robini), in which large males tend to develop as armed adult fighters with thickened third legs, while small males become adult scramblers without thickened legs. We first examined the ontogenetic timing for size- and growth-dependent male morph determination, using experimentally amplified fluctuations in growth rate throughout juvenile development. Having established that somatic growth and body size determine male morph expression immediately before metamorphosis, we examined whether the relationship between adult male morph and size at metamorphosis shifts with food quality. We found that the threshold body size for male morph expression shifts toward lower values with deteriorating food quality, confirming food-dependent allometric plasticity. Such allometric plasticity may allow populations to track prevailing nutritional conditions, potentially facilitating rapid evolution of allometric scaling relationships.

5.
Ecol Evol ; 12(4): e8864, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35462973

ABSTRACT

Sexual selection in animals has been mostly studied in species in which males are signalers and females are choosers. However, in many species, females are (also) signalers. In species with non-signaling females, virgin females are hypothesized to be less choosy than mated females, as virgins must mate to realize fitness and the number of available males is generally limited. Yet, when females signal to attract males, mate limitation can be overcome. We tested how virgin and mated females differ in their calling behavior, mating latency, and in mate choice, using the tobacco budworm Chloridea (Heliothis) virescens as an example for a species in which females are not only choosers but also signalers. We found that virgin females signaled longer than mated females, but virgin and mated signaling females were equally ready to mate, in contrast to non-signaling females. However, we found that virgin signaling females showed weaker mate preference than mated females, which can be explained by the fact that females increase their fitness with multiple matings. Mated females may thus further increase their fitness by more stringent mate selection. We conclude that signaling is a crucial aspect to consider when studying female mate choice because signaling may affect the number of available mates to choose from.

6.
BMC Ecol Evol ; 22(1): 5, 2022 01 08.
Article in English | MEDLINE | ID: mdl-34998364

ABSTRACT

BACKGROUND: Under strong sexual selection, certain species evolve distinct intrasexual, alternative reproductive tactics (ARTs). In many cases, ARTs can be viewed as environmentally-cued threshold traits, such that ARTs coexist if their relative fitness alternates over the environmental cue gradient. Surprisingly, the chemical ecology of ARTs has been underexplored in this context. To our knowledge, no prior study has directly quantified pheromone production for ARTs in a male-polymorphic species. Here, we used the bulb mite-in which males are either armed fighters that kill conspecifics, or unarmed scramblers (which have occasionally been observed to induce mating behavior in other males)-as a model system to gain insight into the role of pheromones in the evolutionary maintenance of ARTs. Given that scramblers forgo investment into weaponry, we tested whether scramblers produce higher quantities of the putative female sex-pheromone α-acaridial than fighters, which would improve the fitness of the scrambler phenotype through female mimicry by allowing avoidance of aggression from competitors. To this end, we sampled mites from a rich and a poor nutritional environment and quantified their production of α-acaridial through gas chromatography analysis. RESULTS: We found a positive relationship between pheromone production and body size, but males exhibited a steeper slope in pheromone production with increasing size than females. Females exhibited a higher average pheromone production than males. We found no significant difference in slope of pheromone production over body size between fighters and scramblers. However, scramblers reached larger body sizes and higher pheromone production than fighters, providing some evidence for a potential female mimic strategy adopted by large scramblers. Pheromone production was significantly higher in mites from the rich nutritional environment than the poor environment. CONCLUSION: Further elucidation of pheromone functionality in bulb mites, and additional inter- and intrasexual comparisons of pheromone profiles are needed to determine if the observed intersexual and intrasexual differences in pheromone production are adaptive, if they are a by-product of allometric scaling, or diet-mediated pheromone production under weak selection. We argue chemical ecology offers a novel perspective for research on ARTs and other complex life-history traits.


Subject(s)
Acaridae , Mites , Sex Attractants , Acaridae/genetics , Animals , Female , Male , Phenotype , Reproduction
7.
Trends Ecol Evol ; 37(2): 129-137, 2022 02.
Article in English | MEDLINE | ID: mdl-34635340

ABSTRACT

There are increasing calls to incorporate developmental plasticity into the framework of eco-evolutionary dynamics. The current way is via genotype-specified reaction norms in which inheritance and phenotype expression are gene-based. I propose a developmental system perspective in which phenotypes are formed during individual development in a process comprising a complex set of interactions that involve genes, biochemistry, somatic state, and the (a)biotic environment, and where the developmental system is the unit of phenotype evolution. I explain how the two perspectives differ in assumptions and predictions, which can be contrasted using cue-and-response systems of anticipatory or mitigating developmental plasticity. This can lead to new ways of eco-evolutionary thinking, and deliver important explanations of how populations respond to environmental change through evolved developmental plasticity.


Subject(s)
Biological Evolution , Phenotype , Population Dynamics
8.
Mar Biol ; 168(8): 132, 2021.
Article in English | MEDLINE | ID: mdl-34720192

ABSTRACT

Salinity drops in estuaries after heavy rains are expected to increase in frequency and intensity over the next decades, with physiological and ecological consequences for the inhabitant organisms. It was investigated whether low salinity stress increases predation risk on three relevant commercial bivalves in Europe. In laboratory, juveniles of Venerupis corrugata, Cerastoderma edule, and the introduced Ruditapes philippinarum were subjected to low salinities (5, 10 and control 35) during two consecutive days and, afterwards, exposed to one of two common predators in the shellfish beds: the shore crab Carcinus maenas and the gastropod Bolinus brandaris, a non-indigenous species present in some Galician shellfish beds. Two types of choice experiment were done: one offering each predator one prey species previously exposed to one of the three salinities, and the other offering each predator the three prey species at the same time, previously exposed to one of the three salinities. Consumption of both predators and predatory behaviour of C. maenas (handling time, rejections, consumption rate) were measured. Predation rates and foraging behaviour differed, with B. brandaris being more generalist than C. maenas. Still, both predators consumed significantly more stressed (salinity 5 and 10) than non-stressed prey. The overall consumption of the native species C. edule and V. corrugata was greater than that of R. philippinarum, likely due to their vulnerability to low salinity and physical traits (e.g., thinner shell, valve gape). Increasing precipitations can alter salinity gradients in shellfish beds, and thus affect the population dynamics of harvested bivalves via predator-prey interactions. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00227-021-03942-8.

9.
Curr Opin Insect Sci ; 36: 66-73, 2019 12.
Article in English | MEDLINE | ID: mdl-31499417

ABSTRACT

Condition-dependent expression of alternative male morphologies (AMMs) exists in many arthropods. Understanding their coexistence requires answering (at least) two questions: (i) what are the ecological selection pressures that maintain condition-dependent plasticity of AMM expression, and (ii) what maintains the associated genetic variation? Focusing on acarid mites, we show that the questions should not be conflated. We argue how, instead, answers should be sought by testing phenotype-level (question 1) or genotype-level (question 2) hypotheses. We illustrate that energy allocation restrictions and physiological trade-offs are likely to play a crucial role in AMM expression in acarid mites. We thus conclude that these aspects require specific attention in identifying selection pressures maintaining condition-dependent plasticity, and evolutionary processes that maintain genetic variation in condition-dependent phenotypic plasticity.


Subject(s)
Acaridae/genetics , Genetic Variation , Selection, Genetic , Acaridae/physiology , Adaptation, Physiological , Animals , Male
10.
Ecol Evol ; 9(16): 9350-9361, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31463026

ABSTRACT

Temporal variation in demographic processes can greatly impact population dynamics. Perturbations of statistical coefficients that describe demographic rates within matrix models have, for example, revealed that stochastic population growth rates (log(λ s)) of fast life histories are more sensitive to temporal autocorrelation of environmental conditions than those of slow life histories. Yet, we know little about the mechanisms that drive such patterns. Here, we used a mechanistic, functional trait approach to examine the functional pathways by which a typical fast life history species, the macrodetrivore Orchestia gammarellus, and a typical slow life history species, the reef manta ray Manta alfredi, differ in their sensitivity to environmental autocorrelation if (a) growth and reproduction are described mechanistically by functional traits that adhere to the principle of energy conservation, and if (b) demographic variation is determined by temporal autocorrelation in food conditions. Opposite to previous findings, we found that O. gammarellus log(λ s) was most sensitive to the frequency of good food conditions, likely because reproduction traits, which directly impact population growth, were most influential to log(λ s). Manta alfredi log(λs ) was instead most sensitive to temporal autocorrelation, likely because growth parameters, which impact population growth indirectly, were most influential to log(λ s). This differential sensitivity to functional traits likely also explains why we found that O. gammarellus mean body size decreased (due to increased reproduction) but M. alfredi mean body size increased (due to increased individual growth) as food conditions became more favorable. Increasing demographic stochasticity under constant food conditions decreased O. gammarellus mean body size and increased log(λ s) due to increased reproduction, whereas M. alfredi mean body and log(λ s) decreased, likely due to decreased individual growth. Our findings signify the importance of integrating functional traits into demographic models as this provides mechanistic understanding of how environmental and demographic stochasticity affects population dynamics in stochastic environments.

11.
J Anim Ecol ; 88(1): 11-23, 2019 01.
Article in English | MEDLINE | ID: mdl-30125360

ABSTRACT

Surprisingly, little is known about how eco-evolutionary feedback loops affect trait dynamics within a single population. Polymorphisms of discrete alternative phenotypes present ideal test beds to investigate this, as the alternative phenotypes typically exhibit contrasting demographic rates mediated through frequency or density dependence, and are thus differentially affected by selection. Alternative reproductive tactics (ARTs), like male fighters and sneakers, are an extreme form of discrete phenotype expression and occur across many taxa. Fighters possess weapons for male-male competition over access to mates, whereas sneakers are defenceless but adopt tactics like female-mimicking. Because fighters in some species mortally injure conspecifics, this raises the question whether fighter expression can feed back to affect population size and structure, thereby altering the selection gradient and evolutionary dynamics of ART expression in an eco-evolutionary feedback loop. Here, we investigated how the eco-evolutionary feedback loop between fighter expression and population size and structure affects the evolution and maintenance of ARTs. We introduced intraspecific killing by fighters in a two-sex, two-ART population model parameterized for the male dimorphic bulb mite (Rhizoglyphus robini) that includes life-history differences between the ARTs and a mating-probability matrix analogous to the classic hawk-dove game. Using adaptive dynamics, we found that the intraspecific killing by fighters can extend the range of life-history parameter values under which ARTs evolve, because fighters that kill other fighters decrease fighter fitness. This effect can be nullified when benefits from killing are incorporated, like increased reproduction through increased energy uptake. The eco-evolutionary feedback effects found here for a dimorphic trait likely also occur in other fitness-related traits, such as behavioural syndromes, parental care and niche construction traits. Current theoretical advances to model eco-evolutionary processes, and empirical steps towards unravelling the underlying drivers, pave the way for understanding how selection affects trait evolution in an eco-evolutionary feedback loop.


Subject(s)
Acaridae , Reproduction , Animals , Biological Evolution , Female , Male , Phenotype , Population Density , Population Dynamics
12.
J Evol Biol ; 32(2): 153-162, 2019 02.
Article in English | MEDLINE | ID: mdl-30422392

ABSTRACT

Morphological structures used as weapons in male-male competition are not only costly to develop but are also probably costly to maintain during adulthood. Therefore, having weapons could reduce the energy available for other fitness-enhancing actions, such as post-copulatory investment. We tested the hypothesis that armed males make lower post-copulatory investments than unarmed males, and that this difference will be most pronounced under food-limited conditions. We performed two experiments using the male-dimorphic bulb mite Rhizoglyphus robini, in which males are either armed "fighters" or unarmed "scramblers." Firstly, we tested whether fighters and scramblers differed in their reproductive output after being starved or fed for 1 or 2 weeks. Secondly, we measured the reproductive output of scramblers and fighters (starved or fed) after one, two or three consecutive matings. Scramblers sired more offspring than fighters after 1 week, but scramblers and fighters only sired a few offspring after 2 weeks. Scramblers also sired more offspring than fighters at the first mating, and males rarely sired offspring after consecutive matings. Contrary to our hypothesis, the fecundity of starved and fed males did not differ. The higher reproductive output of scramblers suggests that, regardless of nutritional state, scramblers make larger post-copulatory investments than fighters. Alternatively, (cryptic) female choice generally favours scramblers. Why the morphs differed in their reproductive output is unclear. Neither morph performed well relatively late in life or after multiple matings. It remains to be investigated to what extent the apparent scrambler advantage contributes to the maintenance and evolution of male morph expression.


Subject(s)
Acaridae/physiology , Aggression , Genetic Fitness , Age Factors , Animals , Copulation , Female , Male , Oviparity , Reproduction , Starvation
13.
Exp Appl Acarol ; 76(4): 435-452, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30421131

ABSTRACT

Intralocus sexual conflict (IASC) arises when males and females have different trait optima. Some males pursue different alternative reproductive tactics (ARTs) with different trait optima, resulting in different strengths of IASC. Consequently, for instance daughter fitness is differentially affected by her sire's morph. We tested if-and which-other life-history traits correlatively change in bidirectional, artificial selection experiments for ARTs. We used the male-dimorphic bulb mite Rhizoglyphus robini, the males of which are high-fitness 'fighters' or low-fitness 'scramblers'. Twice in each of the five generations of selection, we assessed clutch composition (number of mites of the various life stages present) and size (total number of offspring). Furthermore, we tracked offspring from egg to adulthood in the first and final generation to detect differences between selection lines in the size and duration of stages, and in maturation time. We found that selection for male morph increased the frequency of that morph. Furthermore, compared to fighter lines, scrambler lines produced more females, which laid larger eggs (in the final generations), and maintained a higher egg-laying rate for longer. Otherwise, our results showed no consistent differences between the selection lines in clutch size and composition, life stage size or duration, or maturation time. Though we found few correlated life-history trait changes in response to selection on male morph, the differences in egg laying rate and egg size suggest that IASC between fighters is costlier to females than IASC with scramblers. We hypothesize that these differences in reproductive traits allow fighter-offspring to perform better in small, declining populations but scrambler-offspring to perform better in large, growing populations.


Subject(s)
Acaridae/anatomy & histology , Life History Traits , Selection, Genetic , Acaridae/genetics , Animals , Clutch Size , Extremities/anatomy & histology , Female , Male , Phenotype
14.
J Anim Ecol ; 87(4): 893-905, 2018 07.
Article in English | MEDLINE | ID: mdl-29931772

ABSTRACT

Predictions on population responses to perturbations are often derived from trait-based approaches like integral projection models (IPMs), but are rarely tested. IPMs are constructed from functions that describe survival, growth and reproduction in relation to the traits of individuals and their environment. Although these functions comprise biologically non-informative statistical coefficients within standard IPMs, model parameters of the recently developed dynamic energy budget IPM (DEB-IPM) are life-history traits like "length at maturation" and "maximum reproduction rate". Testing predictions from mechanistic IPMs against empirical observations can therefore provide functional insights into the links between individual life history, the environment and population dynamics. Here, we compared the population dynamics of the bulb mite (Rhizoglyphus robini) predicted by a DEB-IPM with those observed in an experiment where populations experienced daily food rations that were either positively correlated over time (red noise), negatively (blue noise) or uncorrelated (white noise). We also selectively harvested large adults in half of these populations. The model failed to generate detailed predictions of population structure as juvenile numbers were overestimated; likely because juvenile-adult interference competition was underestimated. The model performed well at the population level as, for both harvested and unharvested populations, simulations matched the observed, long-term stochastic growth rate λs . We next generalised the model to investigate how stochastic change affects mite λs , which correlated well with the frequency f of experiencing periods of good environment, but, due to the relationship between f and noise colour ρ, did not correlate well with shifts in ρ. The sensitivity of λs to perturbations in life-history parameters depended on the type of stochastic change, as well as population growth. Our findings show that responses to differential mortality depend on individual life-history traits, environmental characteristics and population growth. As long-term climate change causes ever greater environmental fluctuations, trait-based approaches will be increasingly important in predicting population responses to change. We therefore conclude by illustrating what questions can be examined with mechanistic trait-based models like the DEB-IPM, the answers to which will advance our knowledge of the functional links between individual traits, the environment and population dynamics.


Subject(s)
Acaridae/physiology , Environment , Life History Traits , Animals , Models, Biological , Population Dynamics , Reproduction , Stochastic Processes
16.
Ecol Modell ; 366: 37-47, 2017 Dec 24.
Article in English | MEDLINE | ID: mdl-31007343

ABSTRACT

Individuals that disperse from one habitat to another has consequences for individual fitness, population dynamics and gene flow. The fitness benefits accrued in the new habitat are traded off against costs associated with dispersal. Most studies focus on costs at settlement and effects on settlement populations; the influence of dispersal to natal populations is assessed by monitoring change in numbers due to emigration. However, the extent to which natal populations are affected when individuals that invest in dispersal fail to disperse/emigrate is unclear. Here, we use an Integral Projection Model (IPM) to assess how developing into a disperser affects natal population structure and growth. We do so using the bulb mite (Rhizoglyphus robini) as a study system. Bulb mites, in unfavourable environments, develop into a dispersal (deutonymph) stage during ontogeny; these individuals are called dispersers with individuals not developing into this stage called non-dispersers. We varied disperser expression and parameterised IPMs to describe three simulations of successful and unsuccessful dispersal: (i) 'no dispersal' - dispersal stage is excluded and demographic data are from non-disperser individuals; (ii) 'false dispersal' - dispersal stage included and demographic data from non-disperser individuals are used; (iii) 'true dispersal' - dispersal stage included and demographic data are from individuals that go through the dispersal stage and from non-disperser individuals. We found that the type of dispersal simulation (no dispersal < false dispersal < true dispersal) and disperser expression increases generation time and reduces lifetime reproductive success and population growth rate. Our findings show that disperser individuals that fail to leave, can change the structure and growth of natal populations.

17.
PeerJ ; 4: e2370, 2016.
Article in English | MEDLINE | ID: mdl-27635337

ABSTRACT

BACKGROUND: The trade in manta ray gill plates has considerably increased over the last two decades. The resulting increases in ray mortality, in addition to mortality caused by by-catch, has caused many ray populations to decrease in size. The aim of this study was to ascertain how yearling and juvenile growth and survival, and adult survival and reproduction affect reef manta ray (Manta alfredi) population change, to increase our understanding of manta ray demography and thereby improve conservation research and measures for these fish. METHODS: We developed a population projection model for reef manta rays, and used published life history data on yearling and juvenile growth and adult reproduction to parameterise the model. Because little is known about reef manta ray yearling and juvenile survival, we conducted our analyses using a range of plausible survival rate values for yearlings, juveniles and adults. RESULTS: The model accurately captured observed variation in population growth rate, lifetime reproductive success and cohort generation time in different reef manta ray populations. Our demographic analyses revealed a range of population consequences in response to variation in demographic rates. For example, an increase in yearling or adult survival rates always elicited greater responses in population growth rate, lifetime reproductive success and cohort generation time than the same increase in juvenile survival rate. The population growth rate increased linearly, but lifetime reproductive success and cohort generation time increased at an accelerating rate with increasing yearling or adult survival rates. Hence, even a small increase in survival rate could increase lifetime reproductive success by one pup, and cohort generation time by several years. Elasticity analyses revealed that, depending on survival rate values of all life stages, the population growth rate is either most sensitive to changes in the rate with which juveniles survive but stay juveniles (i.e., do not mature into adults) or to changes in adult survival rate. However, when assessing these results against estimates on population growth and adult survival rates for populations off the coasts of Mozambique and Japan, we found that the population growth rate is predicted to be always most sensitive to changes in the adult survival rate. DISCUSSION: It is important to gain an in-depth understanding of reef manta ray life histories, particularly of yearling and adult survival rates, as these can influence reef manta ray population dynamics in a variety of ways. For declining populations in particular, it is crucial to know which life stage should be targeted for their conservation. For one such declining population off the coast of Mozambique, adult annual survival rate has the greatest effect on population growth, and by increasing adult survival by protecting adult aggregation sites, this population's decline could be halted or even reversed.

18.
PLoS One ; 10(9): e0136872, 2015.
Article in English | MEDLINE | ID: mdl-26325395

ABSTRACT

Life history traits play an important role in population dynamics and correlate, both positively and negatively, with dispersal in a wide range of taxa. Most invertebrate studies on trade-offs between life history traits and dispersal have focused on dispersal via flight, yet much less is known about how life history trade-offs influence species that disperse by other means. In this study, we identify effects of investing in dispersal morphology (dispersal expression) on life history traits in the male dimorphic bulb mite (Rhizoglyphus robini). This species has a facultative juvenile life stage (deutonymph) during which individuals can disperse by phoresy. Further, adult males are either fighters (which kill other mites) or benign scramblers. Here, in an experiment, we investigate the effects of investing in dispersal on size at maturity, sex and male morph ratio, and female lifetime reproductive success. We show that life history traits correlate negatively with the expression of the dispersal stage. Remarkably, all males that expressed the dispersal life stage developed into competitive fighters and none into scramblers. This suggests that alternative, male reproductive strategies and dispersal should not be viewed in isolation but considered concurrently.


Subject(s)
Acaridae/physiology , Life Cycle Stages/physiology , Animals , Female , Male , Mites , Phenotype , Population Dynamics , Reproduction/physiology , Sexual Behavior, Animal/physiology
19.
Trends Ecol Evol ; 30(7): 379-81, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25913450

ABSTRACT

The idea that group selection can explain adaptive trait evolution is still controversial. Recent empirical work proposes evidence for group-level adaptation in a social spider, but the findings can also be explained from an individual-level perspective. The challenge remains to identify situations where one can separate group and individual selection.


Subject(s)
Biological Evolution , Spiders/physiology , Adaptation, Physiological , Aggression/physiology , Animals , Phenotype , Selection, Genetic , Social Behavior , Spiders/genetics
20.
Am Nat ; 183(6): 784-97, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24823822

ABSTRACT

Global change alters the environment, including increases in the frequency of (un)favorable events and shifts in environmental noise color. However, how these changes impact the dynamics of populations, and whether these can be predicted accurately has been largely unexamined. Here we combine recently developed population modeling approaches and theory in stochastic demography to explore how life history, morphology, and average fitness respond to changes in the frequency of favorable environmental conditions and in the color of environmental noise in a model organism (an acarid mite). We predict that different life-history variables respond correlatively to changes in the environment, and we identify different life-history variables, including lifetime reproductive success, as indicators of average fitness and life-history speed across stochastic environments. Depending on the shape of adult survival rate, generation time can be used as an indicator of the response of populations to stochastic change, as in the deterministic case. This work is a useful step toward understanding population dynamics in stochastic environments, including how stochastic change may shape the evolution of life histories.


Subject(s)
Life Cycle Stages , Population Dynamics , Reproduction/physiology , Animals , Climate Change , Environment , Mites , Models, Biological
SELECTION OF CITATIONS
SEARCH DETAIL
...