Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 64(21): 15787-15798, 2021 11 11.
Article in English | MEDLINE | ID: mdl-34704759

ABSTRACT

Inhibition of TGFß signaling in concert with a checkpoint blockade has been shown to provide improved and durable antitumor immune response in mouse models. However, on-target adverse cardiovascular effects have limited the clinical use of TGFß receptor (TGFßR) inhibitors in cancer therapy. To restrict the activity of TGFßR inhibitors to tumor tissues and thereby widen the therapeutic index, a series of tumor-activated prodrugs of a selective small molecule TGFßR1 inhibitor 1 were prepared by appending 1 to a serine protease substrate and a half-life extension fatty acid carbon chain. The prodrugs were shown to be selectively metabolized in tumor tissues relative to the heart and blood and demonstrated a prolonged favorable increase in the tumor-to-heart ratio of the active drug in tissue distribution studies. Once-weekly administration of the most tissue-selective compound 10 provided anti-tumor efficacy comparable to the parent compound and reduced systemic exposure of the active drug.


Subject(s)
Antineoplastic Agents/therapeutic use , Neoplasms/drug therapy , Prodrugs/therapeutic use , Receptor, Transforming Growth Factor-beta Type I/antagonists & inhibitors , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/chemistry , Antineoplastic Agents/metabolism , Area Under Curve , Drug Stability , Female , Half-Life , Humans , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Molecular Structure , Myocardium/metabolism , Neoplasms/metabolism , Prodrugs/chemistry , Prodrugs/pharmacokinetics , Small Molecule Libraries/pharmacology , Tissue Distribution , Xenograft Model Antitumor Assays
2.
Biopharm Drug Dispos ; 42(4): 137-149, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33354831

ABSTRACT

Transforming growth factor beta (TGF-ß) is a pleiotropic cytokine that has a wide array of biological effects. For decades, tumor biology implicated TGF-ß as an attractive therapeutic target due to its immunosuppressive effects. Toward this end, multiple pharmaceutical companies developed a number of drug modalities that specifically target the TGF-ß pathway. BMS-986260 is a small molecule, selective TGF-ßR1 kinase inhibitor that was under preclinical development for oncology. In vivo studies across mouse, rat, dog, and monkey and cryopreserved hepatocytes predicted human pharmacokinetics (PK) and distribution of BMS-986260. Efficacy studies of BMS-986260 were undertaken in the MC38 murine colon cancer model, and target engagement, as measured by phosphorylation of SMAD2/3, was assessed in whole blood to predict the clinical efficacious dose. The human clearance is predicted to be low, 4.25 ml/min/kg. BMS-986260 provided a durable and robust antitumor response at 3.75 mg/kg daily and 1.88 mg/kg twice-daily dosing regimens. Phosphorylation of SMAD2/3 was 3.5-fold less potent in human monocytes than other preclinical species. Taken together, the projected clinical efficacious dose was 600 mg QD or 210 mg BID for 3 days followed by a 4-day drug holiday. Mechanism-based cardiovascular findings in the rat ultimately led to the termination of BMS-986260. This study describes the preclinical PK characterization and pharmacodynamics-based efficacious dose projection of a novel small molecule TGF-ßR1 inhibitor.


Subject(s)
Adenocarcinoma/drug therapy , Colonic Neoplasms/drug therapy , Protein Kinase Inhibitors/administration & dosage , Receptor, Transforming Growth Factor-beta Type I/antagonists & inhibitors , Adenocarcinoma/pathology , Animals , Cell Line, Tumor , Colonic Neoplasms/pathology , Dogs , Dose-Response Relationship, Drug , Female , Hepatocytes/metabolism , Humans , Macaca fascicularis , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/pathology , Protein Kinase Inhibitors/pharmacokinetics , Protein Kinase Inhibitors/pharmacology , Rats , Rats, Sprague-Dawley , Species Specificity , Tissue Distribution
3.
Pharmacol Res Perspect ; 7(3): e00488, 2019 06.
Article in English | MEDLINE | ID: mdl-31149343

ABSTRACT

In this study, we describe a novel approach for collecting bile from dogs and cynomolgus monkeys for metabolite profiling, ultrasound-guided cholecystocentesis (UCC). Sampling bile by UCC twice within 24 hours was well tolerated by dogs and monkeys. In studies with atorvastatin (ATV) the metabolite profiles were similar in bile obtained through UCC and from bile duct-cannulated (BDC) dogs. Similar results were observed in UCC and BDC monkeys as well. In both monkey and dog, the primary metabolic pathway observed for ATV was oxidative metabolism. The 2-hydroxy- and 4-hydroxyatorvastatin metabolites were the major oxidation products, which is consistent with previously published metabolite profiles. S-cysteine and glucuronide conjugates were also observed. UCC offers a viable alternative to bile duct cannulation for collection of bile for metabolite profiling of compounds that undergo biliary excretion, given the similar metabolite profiles in bile obtained via each method. Use of UCC for metabolite profiling may reduce the need for studies using BDC animals, a resource-intensive model.


Subject(s)
Atorvastatin/administration & dosage , Bile/chemistry , Metabolomics/methods , Animals , Atorvastatin/pharmacokinetics , Bile Ducts/surgery , Chromatography, High Pressure Liquid , Dogs , Glucuronides/analysis , Macaca fascicularis , Oxidative Stress , Ultrasonography, Interventional
4.
ACS Med Chem Lett ; 7(12): 1207-1212, 2016 Dec 08.
Article in English | MEDLINE | ID: mdl-27994765

ABSTRACT

Introducing a uniquely substituted phenyl sulfone into a series of biphenyl imidazole liver X receptor (LXR) agonists afforded a dramatic potency improvement for induction of ATP binding cassette transporters, ABCA1 and ABCG1, in human whole blood. The agonist series demonstrated robust LXRß activity (>70%) with low partial LXRα agonist activity (<25%) in cell assays, providing a window between desired blood cell ABCG1 gene induction in cynomolgus monkeys and modest elevation of plasma triglycerides for agonist 15. The addition of polarity to the phenyl sulfone also reduced binding to the plasma protein, human α-1-acid glycoprotein. Agonist 15 was selected for clinical development based on the favorable combination of in vitro properties, excellent pharmacokinetic parameters, and a favorable lipid profile.

5.
J Pharmacol Exp Ther ; 352(2): 305-14, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25467132

ABSTRACT

Liver X Receptors (LXRs) α and ß are nuclear hormone receptors that regulate multiple genes involved in reverse cholesterol transport (RCT) and are potential drug targets for atherosclerosis. However, full pan agonists also activate lipogenic genes, resulting in elevated plasma and hepatic lipids. We report the pharmacology of BMS-779788 [2-(2-(1-(2-chlorophenyl)-1-methylethyl)-1-(3'-(methylsulfonyl)-4-biphenylyl)-1H-imidazol-4-yl)-2-propanol], a potent partial LXR agonist with LXRß selectivity, which has an improved therapeutic window in the cynomolgus monkey compared with a full pan agonist. BMS-779788 induced LXR target genes in blood in vivo with an EC50 = 610 nM, a value similar to its in vitro blood gene induction potency. BMS-779788 was 29- and 12-fold less potent than the full agonist T0901317 in elevating plasma triglyceride and LDL cholesterol, respectively, with similar results for plasma cholesteryl ester transfer protein and apolipoprotein B. However, ABCA1 and ABCG1 mRNA inductions in blood, which are critical for RCT, were comparable. Increased liver triglyceride was observed after 7-day treatment with BMS-779788 at the highest dose tested and was nearly identical to the dose response for plasma triglyceride, consistent with the central role of liver LXR in these lipogenic effects. Dose-dependent increases in biliary cholesterol and decreases in phospholipid and bile acid occurred in BMS-779788-treated animals, similar to LXR agonist effects reported in mouse. In summary, BMS-779788, a partial LXRß selective agonist, has decreased lipogenic potential compared with a full pan agonist in cynomolgus monkeys, with similar potency in the induction of genes known to stimulate RCT. This provides support in nonhuman primates for improving LXR agonist therapeutic windows by limiting LXRα activity.


Subject(s)
Anticholesteremic Agents/pharmacology , Imidazoles/pharmacology , Liver/drug effects , Orphan Nuclear Receptors/agonists , Sulfones/pharmacology , ATP-Binding Cassette Transporters/blood , ATP-Binding Cassette Transporters/genetics , Animals , Anticholesteremic Agents/administration & dosage , Anticholesteremic Agents/blood , Dose-Response Relationship, Drug , Drug Partial Agonism , Imidazoles/administration & dosage , Imidazoles/blood , Lipids/blood , Lipogenesis/drug effects , Liver/metabolism , Liver X Receptors , Macaca fascicularis , Male , Sulfones/administration & dosage , Sulfones/blood , Triglycerides/metabolism
6.
Rapid Commun Mass Spectrom ; 23(21): 3457-64, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19813283

ABSTRACT

QuickQuan is an integrated software package for Thermo Scientific triple quadrupole mass spectrometers that allows users to automate routine operations ranging from method development to data processing. QuickQuan automated optimization of compound-selected reaction monitoring (SRM) transitions by evaluating both positive and negative polarities during an infusion. Whichever mode produces the most intense Q1 scan is then carried to product ion spectra. QuickQuan then writes these SRM methods to a shared network database. The total volume of compound needed is 100 microL infused over approximately 1.6 min. The auto-optimization is carried out in 96-well plates and does not require an operator present. The SRM database was shared between two identical TSQ Quantum mass spectrometers. For data acquisition, QuickQuan automatically created a sequence file complete with a data processing method pre-populated with compound IDs and corresponding SRM transitions. To increase throughput we coupled each Finnigan Quantum with ultra-high-pressure liquid chromatography (uHPLC) accomplished using 4x Ultra Flux quaternary pumps that were designed to handle pressures up to 15 000 psi. The total run time for all analyses was 1.2 min using BEH 1.7 microm particle C18 columns. Further time reductions were realized with sample preparation accomplished using Strata Impact protein precipitation plates which provided an in-well protein crash and 0.20 micron filtering in a one-step process. Pharmacokinetic data turnaround time was significantly improved by combining these three techniques of automated method development with the speed efficiency of uHPLC and a single step in well sample preparation.


Subject(s)
Chromatography, High Pressure Liquid/methods , Drug Discovery/methods , Mass Spectrometry/methods , Pharmaceutical Preparations/chemistry , Software , Animals , Pharmaceutical Preparations/blood , Rats , Regression Analysis , Sensitivity and Specificity
7.
Rapid Commun Mass Spectrom ; 22(9): 1359-66, 2008 May.
Article in English | MEDLINE | ID: mdl-18381620

ABSTRACT

Triple quadrupole mass spectrometers are generally considered the instrument of choice for quantitative analysis. However, for the analysis of large peptides we have encountered some cases where, as the data presented here would indicate, ion trap mass spectrometers may be a good alternative. In general, specificity and sensitivity in bioanalytical liquid chromatography/mass spectrometry (LC/MS) assays are achieved via tandem MS (MS/MS) utilizing collision-induced dissociation (CID) while monitoring unique precursor to product ion transitions (i.e. selected reaction monitoring, SRM). Due to the difference in CID processes, triple quadrupoles and ion traps often generate significantly different fragmentation spectra of product ion species and intensities. The large peptidic analytes investigated here generated fewer fragments with higher relative abundance on the ion trap as compared to those generated on the triple quadrupole, resulting in lower limits of detection on the ion trap.


Subject(s)
Peptides/analysis , Calibration , Chromatography, Liquid , Equipment Design , Glucagon-Like Peptide 1/chemistry , Indicators and Reagents , Intercellular Signaling Peptides and Proteins , Mass Spectrometry , Peptides/chemistry , Reference Standards , Vasopressins/chemistry
8.
J Chromatogr B Analyt Technol Biomed Life Sci ; 854(1-2): 260-7, 2007 Jul 01.
Article in English | MEDLINE | ID: mdl-17524973

ABSTRACT

Caco-2 cells, the human colon carcinoma cells, are typically used for screening compounds for their permeability characteristics and P-glycoprotein (P-gp) interaction potential during discovery and development. The P-gp inhibition of test compounds is assessed by performing bi-directional permeability studies with digoxin, a well established P-gp substrate probe. Studies performed with digoxin alone as well as digoxin in presence of test compounds as putative inhibitors constitute the P-gp inhibition assay used to assess the potential liability of discovery compounds. Radiolabeled (3)H-digoxin is commonly used in such studies followed by liquid scintillation counting. This manuscript describes the development of a sensitive, accurate, and reproducible LC-MS/MS method for analysis of digoxin and its internal standard digitoxin using an on-line extraction turbulent flow chromatography coupled to tandem mass spectrometric detection that is amendable to high throughput with use of 96-well plates. The standard curve for digoxin was linear between 10 nM and 5000 nM with regression coefficient (R(2)) of 0.99. The applicability and reliability of the analysis method was evaluated by successful demonstration of efflux ratio (permeability B to A over permeability A to B) greater than 10 for digoxin in Caco-2 cells. Additional evaluations were performed on 13 marketed compounds by conducting inhibition studies in Caco-2 cells using classical P-gp inhibitors (ketoconazole, cyclosporin, verapamil, quinidine, saquinavir etc.) and comparing the results to historical data with (3)H-digoxin studies. Similarly, P-gp inhibition studies with LC-MS/MS analytical method for digoxin were also performed for 21 additional test compounds classified as negative, moderate, and potent P-gp inhibitors spanning multiple chemo types and results compared with the historical P-gp inhibition data from the (3)H-digoxin studies. A very good correlation coefficient (R(2)) of 0.89 between the results from the two analytical methods affords an attractive LC-MS/MS analytical option for labs that need to conduct the P-gp inhibition assay without using radiolabeled compounds.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1/antagonists & inhibitors , Chromatography, Liquid/methods , Digoxin/analysis , Tandem Mass Spectrometry/methods , Caco-2 Cells , Humans , Pilot Projects
9.
Article in English | MEDLINE | ID: mdl-16307910

ABSTRACT

Caco-2 cells are frequently used for screening compounds for their permeability characteristics and P-glycoprotein (P-gp) interaction potential. Bi-directional permeability studies performed on Caco-2 cells followed by analysis by HPLC-UV or LC-MS method constitutes the "method of choice" for the functional assessment of efflux characteristics of a test compound. A high throughput LC-MS/MS method has been developed using on-line extraction turbulent flow chromatography coupled to tandem mass spectrometric detection to analyze multiple compounds present in Hanks balanced salt solution in a single analytical run. All standard curves (P-gp substrates: quinidine, etoposide, rhodamine 123, dexamethasone, and verapamil and non-substrates: metoprolol, sulfasalazine, propranolol, nadolol, and furosemide) were prepared in a cassette mode (ten-in-one) while Caco-2 cell incubations were performed both in discreet mode and in cassette mode. The standard curve range for most compounds was 10-2500 nM with regression coefficients (R(2)) greater than 0.99 for all compounds. The applicability and reliability of the analysis method was evaluated by successful demonstration of efflux ratio greater than 1 for the P-gp substrates studied in the Caco-2 cell model. The use of cassette mode analysis through selected reaction monitoring mass spectrometry presents an attractive option to increase the throughput, sensitivity, selectivity, and efficiency of the model over discreet mode UV detection.


Subject(s)
Cell Membrane Permeability , Chromatography, High Pressure Liquid/methods , Pharmaceutical Preparations/metabolism , Spectrometry, Mass, Electrospray Ionization/methods , Biological Transport , Caco-2 Cells , Chromatography, High Pressure Liquid/instrumentation , Dexamethasone/pharmacokinetics , Etoposide/pharmacokinetics , Furosemide/pharmacokinetics , Humans , Metoprolol/pharmacokinetics , Nadolol/pharmacokinetics , Propranolol/pharmacokinetics , Quinidine/pharmacokinetics , Rhodamine 123/pharmacokinetics , Sulfasalazine/pharmacokinetics , Verapamil/pharmacokinetics
SELECTION OF CITATIONS
SEARCH DETAIL
...