Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
Add more filters










Publication year range
1.
Nat Nanotechnol ; 4(12): 830-4, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19893518

ABSTRACT

Translating the unique characteristics of individual single-walled carbon nanotubes into macroscopic materials such as fibres and sheets has been hindered by ineffective assembly. Fluid-phase assembly is particularly attractive, but the ability to dissolve nanotubes in solvents has eluded researchers for over a decade. Here, we show that single-walled nanotubes form true thermodynamic solutions in superacids, and report the full phase diagram, allowing the rational design of fluid-phase assembly processes. Single-walled nanotubes dissolve spontaneously in chlorosulphonic acid at weight concentrations of up to 0.5 wt%, 1,000 times higher than previously reported in other acids. At higher concentrations, they form liquid-crystal phases that can be readily processed into fibres and sheets of controlled morphology. These results lay the foundation for bottom-up assembly of nanotubes and nanorods into functional materials.

2.
Dalton Trans ; (22): 2937-44, 2008 Jun 14.
Article in English | MEDLINE | ID: mdl-18493629

ABSTRACT

The carboxylate residues of the open ends of aryl-tert-butyl and arylsulfonic acid side-walled functionalized single walled carbon nanotubes (SWNTs) have been investigated for the complexation conditions of the iron-molybdenum cluster [H(x)PMo(12)O(40)CH(4)Mo(72)Fe(30)(O(2)CMe)(15)O(254)(H(2)O)(98)] ("FeMoC"). A range of alternative donor groups for the attachment of FeMoC have been investigated for piranha etched SWNTs, dodecyl side-walled functionalized SWNTs (DD-SWNTs) and ultra-short SWNTs (US-SWNTs), including include pyridines, thiols and phosphines, using coupling reactions to either the carboxylate or hydroxide residues of the SWNTs' open ends. The functionalized SWNTs have been characterized by XPS, uptake of Fe(3+) and, where appropriate, MAS (31)P NMR. The efficacy of binding is dependent on the presence and identity of the ligand moiety. TEM and AFM of the SWNT-FeMoC conjugates show the presence of a 2-3 nm spherical feature on the tip of individual SWNTs.

3.
Cancer ; 110(12): 2654-65, 2007 Dec 15.
Article in English | MEDLINE | ID: mdl-17960610

ABSTRACT

BACKGROUND: Single-walled carbon nanotubes (SWNTs) have remarkable physicochemical properties that may have several medical applications. The authors have discovered a novel property of SWNTs-heat release in a radiofrequency (RF) field-that they hypothesized may be used to produce thermal cytotoxicity in malignant cells. METHODS: Functionalized, water-soluble SWNTs were exposed to a noninvasive, 13.56-megahertz RF field, and heating characteristics were measured with infrared thermography. Three human cancer cell lines were incubated with various concentrations of SWNTs and then treated in the RF field. Cytotoxicity was measured by fluorescence-activated cell sorting. Hepatic VX2 tumors in rabbits were injected with SWNTs or with control solutions and were treated in the RF field. Tumors were harvested 48 hours later to assess viability. RESULTS: The RF field induced efficient heating of aqueous suspensions of SWNTs. This phenomenon was used to produce a noninvasive, selective, and SWNT concentration-dependent thermal destruction in vitro of human cancer cells that contained internalized SWNTs. Direct intratumoral injection of SWNTs in vivo followed by immediate RF field treatment was tolerated well by rabbits bearing hepatic VX2 tumors. At 48 hours, all SWNT-treated tumors demonstrated complete necrosis, whereas control tumors that were treated with RF without SWNTs remained completely viable. Tumors that were injected with SWNTs but were not treated with RF also were viable. CONCLUSIONS: The current results suggested that SWNTs targeted to cancer cells may allow noninvasive RF field treatments to produce lethal thermal injury to the malignant cells. Now, the authors are developing SWNTs coupled with cancer cell-targeting agents to enhance SWNT uptake by cancer cells while limiting uptake by normal cells.


Subject(s)
Incineration , Liver Neoplasms/therapy , Nanotubes, Carbon , Radiofrequency Therapy , Animals , Cell Survival , Humans , Nanotubes, Carbon/adverse effects , Rabbits , Tumor Cells, Cultured
4.
J Nanosci Nanotechnol ; 7(8): 2917-21, 2007 Aug.
Article in English | MEDLINE | ID: mdl-17685318

ABSTRACT

The ability to accurately measure the length of nanotubes is important to understanding nanotube growth and cutting processes. To date, there have been few methods available to obtain a statistically significant length measurement of any nanotube sample due to difficulties in obtaining a complete suspension of individual nanotubes and the tedious nature of measuring 1000+ nanotubes. Here we describe a relatively simple method that functionalizes single-walled carbon nanotubes to achieve a high propensity of individual nanotubes in chloroform as high as 92%. This suspension can be dispersed on mica substrates for AFM analysis. Nanotube lengths and heights can be determined using the Nanotube Length Analysis module of SIMAGIS yielding an accurate measure of length and height distribution of a large population of the nanotube sample.


Subject(s)
Nanotechnology/methods , Nanotubes, Carbon/chemistry , Aluminum Silicates/chemistry , Chloroform/chemistry , Crystallization , Electrochemistry , Microscopy, Atomic Force , Models, Statistical , Nanoparticles/chemistry , Particle Size , Surface Properties
5.
Nano Lett ; 7(1): 15-21, 2007 Jan.
Article in English | MEDLINE | ID: mdl-17212433

ABSTRACT

Continued growth is a way of growing nanotubes targeted to produce continuous and chirality-controlled single-walled carbon nanotube (SWNT) materials. This growth method strongly depends on efficient preparation of open-ended SWNT substrates. Nanoscopically flat open-ended SWNT substrates have been prepared by cutting the SWNT spun fiber with a focused ion beam cutting technique and followed by etching schemes for cleaning amorphous carbon and opening the ends of the SWNTs. The open ends were effectively characterized through selective etch back of open SWNT ends by carbon dioxide gas at 950 degrees C. High density continued growth was demonstrated from these nanoscopically flat open-ended substrates.


Subject(s)
Nanotubes, Carbon , Carbon Dioxide/chemistry , Microscopy, Electron, Scanning
6.
J Phys Chem B ; 111(6): 1249-52, 2007 Feb 15.
Article in English | MEDLINE | ID: mdl-17249726

ABSTRACT

We report on a one-pot, highly selective chemistry to remove residual catalysts from single-walled carbon nanotubes (SWNTs). The impurities, initially present at approximately 35 wt % and mostly as carbon-coated iron nanoparticles, can be driven below 5 wt % with nearly no loss of SWNTs. The carbon-coated iron impurities are dissolved simply by reacting with an aqueous mixture of H2O2 and HCl at 40-70 degrees C for 4-8 h. This purification combines two known reactions involving H2O2 and HCl, respectively; however, by combining these two typically inefficient reactions into a one-pot reaction, the new process is surprisingly selective toward the removal of the metal impurities. This high selectivity derives from the proximity effect of the iron-catalyzed Fenton chemistry. At pH approximately 1-3, iron is dissolved upon exposure, avoiding the otherwise aggressive iron-catalyzed digestion of SWNTs by H2O2. This extremely simple and selective chemistry offers a "green" and scalable process to purify carbon nanotube materials.

7.
J Am Chem Soc ; 128(49): 15824-9, 2006 Dec 13.
Article in English | MEDLINE | ID: mdl-17147393

ABSTRACT

With the desire to mass produce any specific n,m type of single wall carbon nanotube (SWNT) from a small sample of the same material, we disclose here the preliminary work directed toward that goal. The ultimate protocol would involve taking a single n,m-type nanotube sample, cutting the nanotubes in that sample into many short nanotubes, using each of those short nanotubes as a template for growing much longer nanotubes of the same type, and then repeating the process. The result would be an amplification of the original tube type: a parent SWNT serving as the prolific progenitor of future identical SWNT types. As a proof-of-concept, we use here a short SWNT seed as a template for vapor liquid solid (VLS) amplification growth of an individual long SWNT. The original short SWNT seed was a polymer-wrapped SWNT, end-carboxylated, and further tethered with Fe salts at its ends. The Fe salts were to act as the growth catalysts upon subsequent reductive activation. Deposition of the short SWNT-Fe tipped species upon an oxide surface was followed by heating in air to consume the polymer wrappers, then reducing the Fe salts to Fe(0) under a H2-rich atmosphere. During this heating, the Fe(0) can etch back into the short SWNT so that the short SWNT acts as a template for new growth to a long SWNT that occurs upon introduction of C2H4 as a carbon source. Analysis indicated that the templated VLS-grown long SWNT had the same diameter and surface orientation as the original short SWNT seed, although amplifying the original n,m type remains to be proven. This study could pave the way for an amplified growth process of SWNTs en route to any n,m tube type synthesis from a starting sample of pure nanotubes.

8.
Proc Natl Acad Sci U S A ; 103(50): 18882-6, 2006 Dec 12.
Article in English | MEDLINE | ID: mdl-17135351

ABSTRACT

Individualized, chemically pristine single-walled carbon nanotubes have been intravenously administered to rabbits and monitored through their characteristic near-infrared fluorescence. Spectra indicated that blood proteins displaced the nanotube coating of synthetic surfactant molecules within seconds. The nanotube concentration in the blood serum decreased exponentially with a half-life of 1.0 +/- 0.1 h. No adverse effects from low-level nanotube exposure could be detected from behavior or pathological examination. At 24 h after i.v. administration, significant concentrations of nanotubes were found only in the liver. These results demonstrate that debundled single-walled carbon nanotubes are high-contrast near-infrared fluorophores that can be sensitively and selectively tracked in mammalian tissues using optical methods. In addition, the absence of acute toxicity and promising circulation persistence suggest the potential of carbon nanotubes in future pharmaceutical applications.


Subject(s)
Nanotubes, Carbon/analysis , Spectrometry, Fluorescence/methods , Spectrophotometry, Infrared/methods , Animals , Rabbits , Surface-Active Agents/pharmacokinetics
9.
Nano Lett ; 6(12): 2696-700, 2006 Dec.
Article in English | MEDLINE | ID: mdl-17163690

ABSTRACT

We have generated and detected coherent lattice vibrations in single-walled carbon nanotubes corresponding to the radial breathing mode (RBM) using ultrashort laser pulses. Because the band gap is a function of diameter, these RBM-induced diameter oscillations cause ultrafast band gap oscillations, thereby modulating the interband excitonic resonances at the phonon frequencies (3-9 THz). Excitation spectra show a large number of pronounced peaks, allowing the determination of the chiralities present in particular samples and relative population differences of particular chiralities between samples.

10.
J Nanosci Nanotechnol ; 6(7): 1935-8, 2006 Jul.
Article in English | MEDLINE | ID: mdl-17025105

ABSTRACT

Room temperature ozonolysis of fluorinated SWNT and phenyl-sulfonated SWNT have been studied in perfluoropolyether (PFPE) solvents. Etching at the end caps (approximately 70 nm/hour for fluorinated SWNT/PFPE suspension with 1 g/l concentration) has been demonstrated to be the dominating effect during the ozonolysis of fluorinated SWNT. Base on characterization by AFM analysis, X-ray Photoelectron Spectroscopy (XPS) and Raman Spectroscopy, fluorination along the SWNT sidewalls protects F-SWNT from extensive functionalization by ozonolysis. An ozone reaction with fluorinated SWNT has been found to improve its solubility in 96% sulfuric acid. This allows oxidative cutting by ammonium peroxydisulfate without defluorination. In comparison to fluorinated SWNT, phenyl-sulfonated SWNT was found to be effectively and homogeneous cut by ozonolysis in a water suspension.


Subject(s)
Crystallization/methods , Ethers/chemistry , Fluorocarbons/chemistry , Nanotubes, Carbon/chemistry , Nanotubes, Carbon/ultrastructure , Ozone/chemistry , Sulfuric Acids/chemistry , Water/chemistry , Materials Testing , Molecular Conformation , Nanotechnology/methods , Particle Size , Solvents/chemistry , Surface Properties
11.
J Am Chem Soc ; 128(29): 9312-3, 2006 Jul 26.
Article in English | MEDLINE | ID: mdl-16848449

ABSTRACT

A transfer of a VA-SWNT film onto a conductive surface has been achieved using a novel "flip-over" technique. The top surface of a VA-SWNT film was covered by entangled bundles in an as-grown sample. When a VA-SWNT film was flipped over, an optically flat surface consisting of the tips of very well aligned, clean bundles from the bottom of the film are exposed while the top of the film is well contacted to the substrate. Thus, we expect this technique to provide us with means to prepare carbon nanotube electrodes for device applications such as super capacitors, thermo-electric devices, fuel cells, and field emission filaments.

12.
J Phys Chem B ; 110(24): 11624-7, 2006 Jun 22.
Article in English | MEDLINE | ID: mdl-16800455

ABSTRACT

Cutting of single-walled carbon nanotubes (SWNT) has been achieved by extensive ozonolysis at room temperature. Perfluoropolyether (PFPE) was selected as a medium for cutting SWNT due to its high solubility for ozone (O3). A mixture of 9 wt % of O3 in O2 was bubbled through a homogeneous suspension of pristine SWNT in PFPE, at room temperature. The intense disorder mode in the Raman spectra of ozonated SWNT indicates that extensive reaction with the sidewalls of SWNT occurs during ozonolysis. Atomic force microscopy (AFM) images of SWNT, before and after ozonolysis, provided a measure of the extent of the cutting effects. Monitoring of the evolved gases for both pristine and purified SWNT indicates CO2 was produced during the ozonolysis process with a dependence on both system pressure and temperature. During heating, FTIR analysis of gases released indicated that carbon oxygen groups on the sidewalls of SWNT are released as CO2. SWNT was found to be extensively cut after an ozone treatment with a yield of approximately 80% of the original carbon.

13.
Dalton Trans ; (25): 3097-107, 2006 Jul 07.
Article in English | MEDLINE | ID: mdl-16786068

ABSTRACT

The synthetic conditions for the isolation of the iron-molybdenum nanocluster FeMoC [HxPMo12O40 [subset]H4Mo72Fe30(O2CMe)15O254(H2O)98], along with its application as a catalyst precursor for VLS growth of SWNTs have been studied. As-prepared FeMoC is contaminated with the Keplerate cage [H4Mo72Fe30(O2CMe)15O254(H2O)98] without the Keggin [HxPMo12O40]n- template, however, isolation of pure FeMoC may be accomplished by Soxhlet extraction with EtOH. The resulting EtOH solvate is consistent with the replacement of the water ligands coordinated to Fe being substituted by EtOH. FeMoC-EtOH has been characterized by IR, UV-vis spectroscopy, MS, XPS and 31P NMR. The solid-state 31P NMR spectrum for FeMoC-EtOH (delta-5.3 ppm) suggests little effect of the paramagnetic Fe3+ centers in the Keplerate cage on the Keggin ion's phosphorous. The high chemical shift anisotropy, and calculated T1 (35 ms) and T2 (8 ms) values are consistent with a weak magnetic interaction between the Keggin ion's phosphorus symmetrically located within the Keplerate cage. Increasing the FeCl2 concentration and decreasing the pH of the reaction mixture optimizes the yield of FeMoC. The solubility and stability of FeMoC in H2O and MeOH-H2O is investigated. The TGA of FeMoC-EtOH under air, Ar and H2 (in combination with XPS) shows that upon thermolysis the resulting Fe : Mo ratio is highly dependent on the reaction atmosphere: thermolysis in air results in significant loss of volatile molybdenum components. Pure FeMoC-EtOH is found to be essentially inactive as a pre-catalyst for the VLS growth of single-walled carbon nanotubes (SWNTs) irrespective of the substrate or reaction conditions. However, reaction of FeMoC with pyrazine (pyz) results in the formation of aggregates that are found to be active catalysts for the growth of SWNTs. Activation of FeMoC may also be accomplished by the addition of excess iron. The observation of prior work's reported growth of SWNTs from FeMoC is discussed with respect to these results.

14.
J Am Chem Soc ; 128(20): 6560-1, 2006 May 24.
Article in English | MEDLINE | ID: mdl-16704247

ABSTRACT

A hot filament chemical vapor deposition method has been developed to grow vertical array single-walled carbon nanotubes (SWNTs). In this study, a hot filament (temperature greater than 2000 degrees C) was used to activate gas mixtures of hydrogen and carbon containing species at sub-atmospheric pressures. Silicon substrates decorated with islands of iron were directly inserted into a preheated furnace in which a hot filament is activating the gas. Vertical arrays of SWNTs are produced with diameters ranging from 0.78 to 1.6 nm. The samples were characterized with Raman and fluorescence spectroscopy and SEM and TEM microscopy.

15.
Proc Natl Acad Sci U S A ; 103(7): 2026-31, 2006 Feb 14.
Article in English | MEDLINE | ID: mdl-16461892

ABSTRACT

Directed assembly of nanoscale building blocks such as single-walled carbon nanotubes (SWNTs) into desired architectures is a major hurdle for a broad range of basic research and technological applications (e.g., electronic devices and sensors). Here we demonstrate a parallel assembly process that allows one to simultaneously position, shape, and link SWNTs with sub-100-nm resolution. Our method is based on the observation that SWNTs are strongly attracted to COOH-terminated self-assembled monolayers (COOH-SAMs) and that SWNTs with lengths greater than the dimensions of a COOH-SAM feature will align along the boundary between the COOH-SAM feature and a passivating CH3-terminated SAM. By using nanopatterned affinity templates of 16-mercaptohexadecanonic acid, passivated with 1-octadecanethiol, we have formed SWNT dot, ring, arc, letter, and even more sophisticated structured thin films and continuous ropes. Experiment and theory (Monte Carlo simulations) suggest that the COOH-SAMs localize the solvent carrying the nanotubes on the SAM features, and that van der Waals interactions between the tubes and the COOH-rich feature drive the assembly process. A mathematical relationship describing the geometrically weighted interactions between SWNTs and the two different SAMs required to overcome solvent-SWNT interactions and effect assembly is provided.

16.
J Am Chem Soc ; 128(2): 591-5, 2006 Jan 18.
Article in English | MEDLINE | ID: mdl-16402847

ABSTRACT

We present the first quantitative assessment of the maximum amount of nanotubes that can exist in the isotropic phase () of single-walled carbon nanotubes (SWNTs) in Brønsted-Lowry acids. We employ a centrifugation technique in conjunction with UV-vis-nIR spectroscopy to quantify , which is also the critical concentration of the isotropic-nematic transition of SWNTs in strong acids. Centrifugation of biphasic dispersions of SWNTs, that is, acid dispersions consisting of an isotropic phase in equilibrium with an ordered nematic liquid crystalline phase, results in a clear phase separation, where the isotropic phase is supernatant. Dilution of the isotropic phase with a known amount of acid followed by UV-vis-nIR absorbance measurements yields , that is, the maximum concentration of SWNTs that can exist in the isotropic phase in a given acid for a given SWNTs' length distribution. At low SWNT concentration (below 200 ppm) in superacids, light absorbance in the range from 400 to 1400 nm scales linearly with concentration. This Beer's law behavior yields calibration curves for measuring SWNTs' concentration in acids. We find that the critical concentration of the isotropic-nematic transition increases with acid strength in accordance with the previously proposed sidewall protonation mechanism for dispersing SWNTs in acids.

17.
Dalton Trans ; (1): 229-36, 2006 01 07.
Article in English | MEDLINE | ID: mdl-16357981

ABSTRACT

We present herein the VLS growth of SWNTs from oxo-hexacarboxylate-triron precursors, [Fe(3)O(O(2)CCH(3))(6)(EtOH)(3)] and [Fe(3)O(O(2)CCH(2)OMe)(6)(H(2)O)(3)][FeCl(4)], on spin-on-glass surfaces, using C(2)H(4)/H(2) (750 degrees C) and CH(4)/H(2) (800 and 900 degrees C) growth conditions. The SWNTs have been characterized by AFM, SEM and Raman spectroscopy. The characteristics of the SWNTs are found to be independent of the identity of the precursor complex or the solvent from which it is spin-coated. The as grown SWNTs show a low level of side-wall defects and have an average diameter of 1.2-1.4 nm with a narrow distribution of diameters. At 750 and 800 degrees C the SWNTs are grown with a range of lengths (300 nm-9 microm), but at 900 degrees C only the longer SWNTs are observed (6-8 microm). The yield of SWNTs per unit area of catalyst nanoparticle decreases with the growth temperature. We have demonstrated that spin coating of molecular precursors allows for the formation of catalyst nanoparticles suitable for growth of SWNTs with a high degree of uniformity in the diameter, without the formation of preformed clusters of a set diameter.

18.
Nano Lett ; 5(12): 2355-9, 2005 Dec.
Article in English | MEDLINE | ID: mdl-16351177

ABSTRACT

A two-phase liquid-liquid extraction process is presented which is capable of extracting water-soluble single-walled carbon nanotubes into an organic phase. The extraction utilizes electrostatic interactions between a common phase transfer agent and the sidewall functional groups on the nanotubes. Large length-dependent van der Waals forces for nanotubes allow the ability to control the length of nanotubes extracted into the organic phase as demonstrated by atomic force microscopy.


Subject(s)
Chemical Fractionation/methods , Colloids/chemistry , Colloids/isolation & purification , Nanotechnology/methods , Nanotubes, Carbon/chemistry , Nanotubes, Carbon/ultrastructure , Bromides/chemistry , Particle Size , Phase Transition , Quaternary Ammonium Compounds
19.
Nano Lett ; 5(8): 1563-7, 2005 Aug.
Article in English | MEDLINE | ID: mdl-16089489

ABSTRACT

Manipulating optical properties of single-walled nanotubes (SWNTs) is necessary for the development of nanoscale optical devices and probes for biomedical research. In life sciences it will make possible the direct observation of SWNTs inside living cells using optical microscopes. In the nanotechnology field it will enable the development of nanosensors with fluorescent reporting. However, the direct fluorescent labeling of SWNTs is obstructed by their strong light quenching qualities. Besides, chemical functionalization of SWNTs needed for the covalent attachment of fluorescent dyes could change favorable properties of nanotubes. Here we report that optical properties of SWNTs can be manipulated without their covalent modification by wrapping them with fluorescently labeled polymer poly(vinylpyrrolidone) (PVP-1300). Fluorescent PVP-1300 forms a monomolecular approximately 2.5 nm thick layer coiling around individual SWNTs and nanotube bundles. PVP casing is fluorescent although it is only several nanometers thick. This makes individual SWNTs observable by a fluorescent microscope. The spare polymer strands left over after wrapping around the relatively shorter nanotubes form junctions between SWNTs tying them together into new configurations, primarily Y- and psi-type junctions. The ability to use a single fluorescent polymer strand to fasten nanotubes together can be useful in assembly of nanotube-made devices. In PVP-covered SWNTs multiple fluorophores are attached to each single nanotube making them unique composite fluorophores attractive as parts of biological fluorescent probes and in the development of the new materials in photonics and nanotechnology.


Subject(s)
Materials Testing/methods , Microscopy, Fluorescence/methods , Molecular Probe Techniques , Nanotechnology/methods , Nanotubes, Carbon/chemistry , Nanotubes, Carbon/ultrastructure , Povidone/chemistry , Image Enhancement , Optical Devices , Particle Size , Polymers/analysis , Polymers/chemistry , Povidone/analysis , Staining and Labeling/methods
20.
J Nanosci Nanotechnol ; 5(7): 1035-40, 2005 Jul.
Article in English | MEDLINE | ID: mdl-16108423

ABSTRACT

Using the High Pressure carbon monoxide (HiPco) reactor we conducted an experiment on the effects of changing the catalyst concentration. With each catalyst concentration tested the resulting raw HiPco material was characterized for average SWNT lengths, SWNT diameters, residual iron particle size, and large fullerene content. We were able to determine trends in each of these characteristics as the catalyst concentration was changed. As the catalyst concentration was decreased SWNT lengths increased, SWNT diameters increased, the residual iron particle size increased, and the large fullerene content decreased. From these trends we have developed a Competitive Growth model for nucleation and growth of SWNTs via the HiPco process.


Subject(s)
Carbon Monoxide/chemistry , Nanotechnology/methods , Nanotubes, Carbon/chemistry , Catalysis , Fullerenes , Macromolecular Substances , Microscopy, Electron, Transmission , Models, Chemical , Nanostructures/analysis , Nanotubes, Carbon/analysis , Normal Distribution , Pressure
SELECTION OF CITATIONS
SEARCH DETAIL
...