Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Med Chem Lett ; 14(10): 1427-1433, 2023 Oct 12.
Article in English | MEDLINE | ID: mdl-37849537

ABSTRACT

Diacylglycerol O-acyltransferase 2 (DGAT2) inhibitors have been shown to lower liver triglyceride content and are being explored clinically as a treatment for non-alcoholic steatohepatitis (NASH). This work details efforts to find an extended-half-life DGAT2 inhibitor. A basic moiety was added to a known inhibitor template, and the basicity and lipophilicity were fine-tuned by the addition of electrophilic fluorines. A weakly basic profile was required to find an appropriate balance of potency, clearance, and permeability. This work culminated in the discovery of PF-07202954 (12), a weakly basic DGAT2 inhibitor that has advanced to clinical studies. This molecule displays a higher volume of distribution and longer half-life in preclinical species, in keeping with its physicochemical profile, and lowers liver triglyceride content in a Western-diet-fed rat model.

2.
J Med Chem ; 63(13): 7268-7292, 2020 07 09.
Article in English | MEDLINE | ID: mdl-32462865

ABSTRACT

An experimental approach is described for late-stage lead diversification of frontrunner drug candidates using nanomole-scale amounts of lead compounds for structure-activity relationship development. The process utilizes C-H bond activation methods to explore chemical space by transforming candidates into newly functionalized leads. A key to success is the utilization of microcryoprobe nuclear magnetic resonance (NMR) spectroscopy, which permits the use of low amounts of lead compounds (1-5 µmol). The approach delivers multiple analogues from a single lead at nanomole-scale amounts as DMSO-d6 stock solutions with a known structure and concentration for in vitro pharmacology and absorption, distribution, metabolism, and excretion testing. To demonstrate the feasibility of this approach, we have used the antihistamine agent loratadine (1). Twenty-six analogues of loratadine were isolated and fully characterized by NMR. Informative SAR analogues were identified, which display potent affinity for the human histamine H1 receptor and improved metabolic stability.


Subject(s)
Loratadine/analogs & derivatives , Loratadine/pharmacokinetics , Structure-Activity Relationship , Animals , Chromatography, High Pressure Liquid , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Dimethyl Sulfoxide/chemistry , Dogs , Drug Discovery/methods , Histamine H1 Antagonists, Non-Sedating/chemistry , Histamine H1 Antagonists, Non-Sedating/pharmacology , Humans , Hydrogen Bonding , Inactivation, Metabolic , Loratadine/chemistry , Magnetic Resonance Spectroscopy , Metalloporphyrins/chemistry , Metalloporphyrins/metabolism , Microsomes, Liver/drug effects , Microsomes, Liver/metabolism , Rabbits , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Tandem Mass Spectrometry , Tissue Distribution
3.
Bioorg Med Chem Lett ; 24(18): 4410-4413, 2014 Sep 15.
Article in English | MEDLINE | ID: mdl-25176186

ABSTRACT

X-ray crystallographic characterization of products derived from natural and fully synthetic trioxacarcins, molecules with potent antiproliferative effects, illuminates aspects of their reactivity and mechanism of action. Incubation of the fully synthetic trioxacarcin analog 3, which lacks one of the carbohydrate residues present in the natural product trioxacarcin A (1) as well as oxygenation at C2 and C4 yet retains potent antiproliferative effects, with the self-complimentary duplex oligonucleotide d(AACCGGTT) led to production of a crystalline covalent guanine adduct (6). Adduct 6 is closely analogous to gutingimycin (2), the previously reported guanine adduct derived from incubation of natural trioxacarcin A (1) with duplex DNA, suggesting that 3 and 1 likely share a common basis of cytotoxicity. In addition, we isolated a novel, dark-red crystalline guanine adduct (7) from incubation of trioxacarcin A itself with the self-complimentary duplex oligonucleotide d(CGTATACG). Crystallographic analysis suggests that 7 is an anthraquinone derivative, which we propose arises by a sequence of guanosine alkylation within duplex DNA, depurination, base-catalyzed elimination of the trioxacarcinose A carbohydrate residue, and oxidative rearrangement to form an anthraquinone. We believe that this heretofore unrecognized chemical instability of natural trioxacarcins may explain why trioxacarcin analogs lacking C4 oxygenation exhibit superior chemical stabilities yet, as evidenced by structure 3, retain a capacity to form lesions with duplex DNA.


Subject(s)
Aminoglycosides/chemistry , DNA Adducts/chemistry , Guanine/chemistry , Aminoglycosides/chemical synthesis , Crystallography, X-Ray , Guanine/analogs & derivatives , Models, Molecular , Molecular Conformation
4.
Nat Chem ; 5(10): 886-93, 2013 Oct.
Article in English | MEDLINE | ID: mdl-24056347

ABSTRACT

The trioxacarcins are polyoxygenated, structurally complex natural products that potently inhibit the growth of cultured human cancer cells. Here we describe syntheses of trioxacarcin A, DC-45-A1 and structural analogues by late-stage stereoselective glycosylation reactions of fully functionalized, differentially protected aglycon substrates. Key issues addressed in this work include the identification of an appropriate means to activate and protect each of the two 2-deoxysugar components, trioxacarcinose A and trioxacarcinose B, as well as a viable sequencing of the glycosidic couplings. The convergent, component-based sequence we present allows for rapid construction of structurally diverse, synthetic analogues that would be inaccessible by any other means, in amounts required to support biological evaluation. Analogues that arise from the modification of four of five modular components are assembled in 11 steps or fewer. The majority of these are found to be active in antiproliferative assays using cultured human cancer cells.


Subject(s)
Aminoglycosides/chemistry , Aminoglycosides/chemical synthesis , Glycosides/chemical synthesis , Biological Products/chemical synthesis , Glycosides/chemistry , Glycosylation , Humans , Molecular Structure , Stereoisomerism
5.
Org Lett ; 14(7): 1812-5, 2012 Apr 06.
Article in English | MEDLINE | ID: mdl-22404560

ABSTRACT

Two routes to the 2,6-dideoxysugar methyl trioxacarcinoside A are described. Each was enabled by an apparent α-chelation-controlled addition of an allylmetal reagent to a ketone substrate containing a free α-hydroxyl group and a ß-hydroxyl substituent, either free or protected as the corresponding di-tert-butylmethyl silyl ether. Both routes provide practical access to gram quantities of trioxacarcinose A in a form suitable for glycosidic coupling reactions.


Subject(s)
Glycosides/chemical synthesis , Ketones/chemistry , Chelating Agents/chemistry , Glycosides/chemistry , Indicators and Reagents , Molecular Structure , Stereoisomerism
6.
J Org Chem ; 76(20): 8554-9, 2011 Oct 21.
Article in English | MEDLINE | ID: mdl-21895005

ABSTRACT

An efficient four-step synthetic route to the useful chiral building block (2R,3S)-dihydroxybutyric acid acetonide in >95% ee is detailed. The sequence is readily scaled, requires no chromatography, and allows for efficient recycling of p-phenylbenzyl alcohol, an expedient for enantio- and diastereoenrichment by recrystallization.


Subject(s)
Chemistry, Organic/methods , Crotonates/chemistry , Hydroxybutyrates/chemical synthesis , Alcohols/chemistry , Crystallization , Hydroxylation , Magnetic Resonance Spectroscopy , Molecular Structure , Phenols/chemistry , Recycling , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL
...