Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmacol Res ; 171: 105740, 2021 09.
Article in English | MEDLINE | ID: mdl-34246781

ABSTRACT

Many studies have suggested that imbalance of the gut microbial composition leads to an increase in pro-inflammatory cytokines and promotes oxidative stress, and this are directly associated with neuropsychiatric disorders, including major depressive disorder (MDD). Clinical data indicated that the probiotics have positive impacts on the central nervous system and thus may have a key role to treatment of MDD. This study examined the benefits of administration of Komagataella pastoris KM71H (8 log UFC·g-1/animal, intragastric route) in attenuating behavioral, neurochemical, and neuroendocrine changes in animal models of depressive-like behavior induced by repeated restraint stress and lipopolysaccharide (0.83 mg/kg). We demonstrated that pretreatment of mice with this yeast prevented depression-like behavior induced by stress and an inflammatory challenge in mice. We believe that this effect is due to modulation of the permeability of the blood-brain barrier, restoration in the mRNA levels of the Nuclear factor kappa B, Interleukin 1ß, Interferon γ, and Indoleamine 2 3-dioxygenase, and prevention of oxidative stress in the prefrontal cortices, hippocampi, and intestine of mice and of the decrease the plasma corticosterone levels. Thus, we conclude that K. pastoris KM71H has properties for a new proposal of probiotic with antidepressant-like effect, arising as a promising therapeutic strategy for MDD.


Subject(s)
Antidepressive Agents/therapeutic use , Depression/therapy , Depressive Disorder, Major/therapy , Probiotics/therapeutic use , Saccharomycetales , Stress, Psychological/therapy , Animals , Antidepressive Agents/pharmacology , Behavior, Animal , Blood-Brain Barrier/metabolism , Brain/metabolism , Corticosterone/blood , Depression/metabolism , Depression/pathology , Depressive Disorder, Major/metabolism , Depressive Disorder, Major/pathology , Disease Models, Animal , Gene Expression , Intestine, Small/anatomy & histology , Intestine, Small/metabolism , Lipopolysaccharides , Male , Mice , Oxidative Stress , Probiotics/pharmacology , Spleen/pathology , Stress, Psychological/metabolism , Stress, Psychological/pathology
2.
Behav Brain Res ; 396: 112874, 2021 01 01.
Article in English | MEDLINE | ID: mdl-32835778

ABSTRACT

The contribution of oxidative stress has been described in numerous studies as one of the main pathways involved in the pathophysiology of anxiety and its comorbidities, such as chronic pain. Therefore, in this study, we investigated the anxiolytic-like, antiallodynic, and anti-hyperalgesic effects of 3,5-dimethyl-1-phenyl-4-(phenylselanyl)-1H-pyrazole (SePy) in response to acute restraint stress (ARS) in mice through the modulation of oxidative stress and neuroendocrine responses. Mice were restrained for 2 h followed by SePy (1 or 10 mg/kg, intragastrically) treatment. Behavioral, and biochemical tests were performed after further 30 min. The treatment with SePy reversed (i) the decreased time spent and the number of entries in the open arms of the elevated plus-maze apparatus, (ii) the decreased time spent in the central zone of the open field test and the increased number of grooming, (iii) the increased number of marbles buried, (iv) the increased response frequency of Von Frey Hair stimulation, and (v) the decreased latency time to nociceptive response in the hot plate test stress induced by ARS. Biochemically, SePy reversed ARS-induced increased levels of plasma corticosterone, and reversed the ARS-induced alterations in the levels of reactive species, lipid peroxidation, and superoxide dismutase and catalase activities in the prefrontal cortices and hippocampi of mice. Moreover, a molecular docking approach suggested that SePy may interact with the active site of the glucocorticoid receptor. Altogether, these results indicate that SePy attenuated anxiolytic-like behavior, hyperalgesia, and mechanical allodynia while modulating oxidative stress and neuroendocrine responses in stressed mice.


Subject(s)
Anti-Anxiety Agents/pharmacology , Anxiety/drug therapy , Behavior, Animal/drug effects , Hippocampus/drug effects , Hyperalgesia/drug therapy , Neurosecretory Systems/drug effects , Nociception/drug effects , Oxidative Stress/drug effects , Prefrontal Cortex/drug effects , Stress, Psychological/drug therapy , Stress, Psychological/metabolism , Animals , Anti-Anxiety Agents/administration & dosage , Corticosterone/blood , Male , Mice , Pyrazoles , Restraint, Physical , Selenium
SELECTION OF CITATIONS
SEARCH DETAIL
...