Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
J Physiol ; 602(5): 855-873, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38376957

ABSTRACT

Myoglobin (Mb) plays an important role at rest and during exercise as a reservoir of oxygen and has been suggested to regulate NO• bioavailability under hypoxic/acidic conditions. However, its ultimate role during exercise is still a subject of debate. We aimed to study the effect of Mb deficiency on maximal oxygen uptake ( V ̇ O 2 max ${\dot V_{{{\mathrm{O}}_2}\max }}$ ) and exercise performance in myoglobin knockout mice (Mb-/- ) when compared to control mice (Mb+/+ ). Furthermore, we also studied NO• bioavailability, assessed as nitrite (NO2 - ) and nitrate (NO3 - ) in the heart, locomotory muscle and in plasma, at rest and during exercise at exhaustion both in Mb-/- and in Mb+/+ mice. The mice performed maximal running incremental exercise on a treadmill with whole-body gas exchange measurements. The Mb-/- mice had lower body mass, heart and hind limb muscle mass (P < 0.001). Mb-/- mice had significantly reduced maximal running performance (P < 0.001). V ̇ O 2 max ${\dot V_{{{\mathrm{O}}_2}\max }}$ expressed in ml min-1 in Mb-/ - mice was 37% lower than in Mb+/+ mice (P < 0.001) and 13% lower when expressed in ml min-1  kg body mass-1 (P = 0.001). Additionally, Mb-/- mice had significantly lower plasma, heart and locomotory muscle NO2 - levels at rest. During exercise NO2 - increased significantly in the heart and locomotory muscles of Mb-/- and Mb+/+ mice, whereas no significant changes in NO2 - were found in plasma. Our study showed that, contrary to recent suggestions, Mb deficiency significantly impairs V ̇ O 2 max ${\dot V_{{{\mathrm{O}}_2}\max }}$ and maximal running performance in mice. KEY POINTS: Myoglobin knockout mice (Mb-/- ) possess lower maximal oxygen uptake ( V ̇ O 2 max ${\dot V_{{{\mathrm{O}}_2}\max }}$ ) and poorer maximal running performance than control mice (Mb+/+ ). Respiratory exchange ratio values at high running velocities in Mb-/- mice are higher than in control mice suggesting a shift in substrate utilization towards glucose metabolism in Mb-/- mice at the same running velocities. Lack of myoglobin lowers basal systemic and muscle NO• bioavailability, but does not affect exercise-induced NO2 - changes in plasma, heart and locomotory muscles. The present study demonstrates that myoglobin is of vital importance for V ̇ O 2 max ${\dot V_{{{\mathrm{O}}_2}\max }}$ and maximal running performance as well as explains why previous studies have failed to prove such a role of myoglobin when using the Mb-/- mouse model.


Subject(s)
Myoglobin , Running , Mice , Animals , Myoglobin/genetics , Nitrogen Dioxide , Running/physiology , Oxygen , Exercise Test , Mice, Knockout , Oxygen Consumption/physiology
2.
Pharmacol Rep ; 74(6): 1182-1197, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36463349

ABSTRACT

Immuno-thrombosis of COVID-19 results in the activation of platelets and coagulopathy. Antiplatelet therapy has been widely used in COVID-19 patients to prevent thrombotic events. However, recent analysis of clinical trials does not support the major effects of antiplatelet therapy on mortality in hospitalized COVID-19 patients, despite the indisputable evidence for an increased risk of thrombotic complications in COVID-19 disease. This apparent paradox calls for an explanation. Platelets have an important role in sensing and orchestrating host response to infection, and several platelet functions related to host defense response not directly related to their well-known hemostatic function are emerging. In this paper, we aim to review the evidence supporting the notion that platelets have protective properties in maintaining endothelial barrier integrity in the course of an inflammatory response, and this role seems to be of particular importance in the lung. It might, thus, well be that the inhibition of platelet function, if affecting the protective aspect of platelet activity, might diminish clinical benefits resulting from the inhibition of the pro-thrombotic phenotype of platelets in immuno-thrombosis of COVID-19. A better understanding of the platelet-dependent mechanisms involved in the preservation of the endothelial barrier is necessary to design the antiplatelet therapeutic strategies that inhibit the pro-thrombotic activity of platelets without effects on the vaso-protective function of platelets safeguarding the pulmonary endothelial barrier during multicellular host defense in pulmonary circulation.


Subject(s)
COVID-19 , Humans , COVID-19/complications , Platelet Aggregation Inhibitors/pharmacology , Platelet Aggregation Inhibitors/therapeutic use
3.
Front Mol Biosci ; 9: 1050112, 2022.
Article in English | MEDLINE | ID: mdl-36504711

ABSTRACT

Ageing is a major risk factor for cancer metastasis but the underlying mechanisms remain unclear. Here, we characterised ageing effects on cancer-induced endothelial-mesenchymal transition (EndMT) in the pulmonary circulation of female BALB/c mice in a metastatic 4T1 breast cancer model. The effect of intravenously injected 4T1 cells on pulmonary endothelium, pulmonary metastasis, lung tissue architecture, and systemic endothelium was compared between 40-week-old and 20-week-old mice. The 40-week-old mice showed features of ongoing EndMT in their lungs before 4T1 breast cancer cell injection. Moreover, they had preexisting endothelial dysfunction in the aorta detected by in vivo magnetic resonance imaging (MRI) compared to 20-week-old mice. The injection of 4T1 breast cancer cells into 40-week-old mice resulted in rapid EndMT progression in their lungs. In contrast, injection of 4T1 breast cancer cells into 20-week-old mice resulted in initiation and less pronounced EndMT progression. Although the number of metastases did not differ significantly between 20-week-old and 40-week-old mice, the lungs of older mice displayed altered lung tissue architecture and biochemical content, reflected in higher Amide II/Amide I ratio, higher fibronectin levels, and hypoxia-inducible factor 1 subunit alpha (HIF1α) levels as well as lower nitric oxide (NO) production. Our results indicate that age-dependent pre-existing endothelial dysfunction in the pulmonary endothelium of 40-week-old mice predisposed them to rapid EndMT progression in the presence of circulating 4T1 breast cancer cells what might contribute to a more severe metastatic breast cancer phenotype in these ageing mice compared to younger mice.

4.
Front Pharmacol ; 13: 834472, 2022.
Article in English | MEDLINE | ID: mdl-35295330

ABSTRACT

Activation of the coagulation cascade favours metastatic spread, but antithrombotic therapy might also have detrimental effects on cancer progression. In this study, we characterized the effects of dabigatran, a direct reversible thrombin inhibitor, on the pulmonary endothelial barrier and metastatic spread in a murine model of breast cancer metastasis. Dabigatran etexilate (100 mg kg-1) was administered to mice twice daily by oral gavage. Pulmonary metastasis, pulmonary endothelium permeability in vivo, and platelet reactivity were evaluated after intravenous injection of 4T1 breast cancer cells into BALB/c mice. The effect of dabigatran on platelet-dependent protection of pulmonary endothelial barrier in the presence of an inflammatory stimulus was also verified in vitro using human lung microvascular endothelial cell (HLMVEC) cultures. Dabigatran-treated mice harbored more metastases in their lungs and displayed increased pulmonary endothelium permeability after cancer cell injection. It was not associated with altered lung fibrin deposition, changes in INFγ, or complement activation. In the in vitro model of the pulmonary endothelial barrier, dabigatran inhibited platelet-mediated protection of pulmonary endothelium. In a murine model of breast cancer metastasis, dabigatran treatment promoted pulmonary metastasis by the inhibition of platelet-dependent protection of pulmonary endothelial barrier integrity.

5.
Appl Spectrosc ; 76(4): 439-450, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34076540

ABSTRACT

Label-free molecular imaging is a promising utility to study tissues in terms of the identification of their compartments as well as chemical features and alterations induced by disease. The aim of this work was to assess if higher magnification of optics in the Fourier transform infrared (FT-IR) microscope coupled with the focal plane detector resulted in better resolution of lung structures and if the histopathological features correlated with clustering of spectral images. FT-IR spectroscopic imaging was performed on paraffinized lung tissue sections from mice with optics providing a total magnification of 61× and 36×. Then, IR images were subjected to unsupervised cluster analysis and, subsequently, cluster maps were compared with hematoxylin and eosin staining of the same tissue section. Based on these results, we observed minute features such as cellular compartments in single alveoli and bronchiole, blood cells and megakaryocytes in a vessel as well as atelectasis of the lung. In the case of the latter, differences in composition were also noted between the tissue from the non-cancerous and cancerous specimen. This study demonstrated the ability of high-definition FT-IR imaging to evaluate the chemical features of well-resolved lung structures that could complement the histological examination widely used in animal models of disease.


Subject(s)
Neoplasms , Animals , Disease Models, Animal , Fourier Analysis , Lung/diagnostic imaging , Mice , Spectroscopy, Fourier Transform Infrared/methods
6.
Cancers (Basel) ; 13(2)2021 Jan 06.
Article in English | MEDLINE | ID: mdl-33418894

ABSTRACT

The current understanding of mechanisms underlying the formation of metastatic tumors has required multi-parametric methods. The tissue micro-environment in secondary organs is not easily evaluated due to complex interpretation with existing tools. Here, we demonstrate the detection of structural modifications in proteins using emerging Fourier Transform Infrared (FTIR) imaging combined with light polarization. We investigated lungs affected by breast cancer metastasis in the orthotopic murine model from the pre-metastatic phase, through early micro-metastasis, up to an advanced phase, in which solid tumors are developed in lung parenchyma. The two IR-light polarization techniques revealed, for the first time, the orientational ordering of proteins upon the progression of pulmonary metastasis of breast cancer. Their distribution was complemented by detailed histological examination. Polarized contrast imaging recognised tissue structures of lungs and showed deformations in protein scaffolds induced by inflammatory infiltration, fibrosis, and tumor growth. This effect was recognised by not only changes in absorbance of the spectral bands but also by the band shifts and the appearance of new signals. Therefore, we proposed this approach as a useful tool for evaluation of progressive and irreversible molecular changes that occur sequentially in the metastatic process.

7.
Metabolism ; 114: 154400, 2021 01.
Article in English | MEDLINE | ID: mdl-33058853

ABSTRACT

OBJECTIVE: Dyslipidaemia is a major risk factor for myocardial infarction that is known to correlate with atherosclerosis in the coronary arteries. We sought to clarify whether metabolic alterations induced by dyslipidaemia in cardiomyocytes collectively constitute an alternative pathway that escalates myocardial injury. METHODS: Dyslipidaemic apolipoprotein E and low-density lipoprotein receptor (ApoE/LDLR) double knockout (ApoE-/-/LDLR-/-) and wild-type C57BL/6 (WT) mice aged six months old were studied. Cardiac injury under reduced oxygen supply was evaluated by 5 min exposure to 5% oxygen in the breathing air under electrocardiogram (ECG) recording and with the assessment of troponin I release. To address the mechanisms LC/MS was used to analyse the cardiac proteome pattern or in vivo metabolism of stable isotope-labelled substrates and HPLC was applied to measure concentrations of cardiac high-energy phosphates. Furthermore, the effect of blocking fatty acid use with ranolazine on the substrate preference and cardiac hypoxic damage was studied in ApoE-/-/LDLR-/- mice. RESULTS: Hypoxia induced profound changes in ECG ST-segment and troponin I leakage in ApoE-/-/LDLR-/- mice but not in WT mice. The evaluation of the cardiac proteomic pattern revealed that ApoE-/-/LDLR-/- as compared with WT mice were characterised by coordinated increased expression of mitochondrial proteins, including enzymes of fatty acids' and branched-chain amino acids' oxidation, accompanied by decreased expression levels of glycolytic enzymes. These findings correlated with in vivo analysis, revealing a reduction in the entry of glucose and enhanced entry of leucine into the cardiac Krebs cycle, with the cardiac high-energy phosphates pool maintained. These changes were accompanied by the activation of molecular targets controlling mitochondrial metabolism. Ranolazine reversed the oxidative metabolic shift in ApoE-/-/LDLR-/- mice and reduced cardiac damage induced by hypoxia. CONCLUSIONS: We suggest a novel mechanism for myocardial injury in dyslipidaemia that is consequent to an increased reliance on oxidative metabolism in the heart. The alterations in the metabolic pattern that we identified constitute an adaptive mechanism that facilitates maintenance of metabolic equilibrium and cardiac function under normoxia. However, this adaptation could account for myocardial injury even in a mild reduction of oxygen supply.


Subject(s)
Atherosclerosis/metabolism , Dyslipidemias/metabolism , Energy Metabolism/physiology , Myocardial Infarction/metabolism , Myocytes, Cardiac/metabolism , Animals , Apolipoproteins E/genetics , Apolipoproteins E/metabolism , Coronary Artery Disease/metabolism , Electrocardiography , Mice , Mice, Knockout , Receptors, LDL/genetics , Receptors, LDL/metabolism , Troponin I/metabolism
9.
Analyst ; 145(14): 4982-4990, 2020 Jul 21.
Article in English | MEDLINE | ID: mdl-32515437

ABSTRACT

Lungs, due to their high oxygen availability and vascularization, are an ideal environment for cancer cell migration, metastasis and tumour formation. These processes are directly connected with extracellular matrix (ECM) remodelling, resulting from cancer cell infiltration and preparation of the environment suitable for tumour growth. Herein, we compare the potential of fast, label-free and non-destructive methods of Fourier-transform infrared spectroscopy (FT-IR) in standard and high definition (HD) modes with nonlinear coherent anti-Stokes Raman scattering (CARS), second harmonic generation (SHG), two-photon excited fluorescence (TPEF) and a fluorescence lifetime imaging (FLIM) technique for lung metastasis detection. We show their potential in the detection of lung macrometastasis, in which we already observed the ECM remodelling. The CARS image revealed a dense cell fraction typical of ECM remodeling and reduction of the TPEF signal together with an increase of fluorescence lifetime predominantly due to NAD(P)H suggesting metabolic changes in the metastatic foci. FT-IR spectroscopy allowed not only for macrometastasis detection but also their stage definition based mainly on the analysis of proteins, RNA and glycogen fractions. The multimodal approach additionally suggested partial enzymatic degradation of elastin in ECM and collagen remodelling.


Subject(s)
Breast Neoplasms , Lung Neoplasms , Animals , Breast Neoplasms/diagnostic imaging , Humans , Lung Neoplasms/diagnostic imaging , Mice , Photons , Spectroscopy, Fourier Transform Infrared , Spectrum Analysis, Raman
10.
PLoS One ; 15(4): e0230520, 2020.
Article in English | MEDLINE | ID: mdl-32251451

ABSTRACT

Long-term administration of acetylsalicylic acid (ASA) was effective in prevention of colorectal cancer, whereas the efficacy of this compound in other cancer types, including breast cancer, has been less convincingly documented. Indeed, the antimetastatic effect of low-dose ASA was observed only in the early intravascular phase of metastasis of breast cancer. In the present work, we characterized the effects of long-term treatment with ASA on the late phase of pulmonary metastasis in a mouse orthotopic 4T1 breast cancer model. Mice were treated with ASA at a dose of 12 mg·kg-1 of body weight daily starting one week prior to inoculation of 4T1 breast cancer cells, and the treatment was continued throughout progression of the disease. ASA administration decreased platelet TXB2 production in ex vivo assays but did not change thrombin-induced platelet reactivity. Although the number of metastases in the lungs remained unchanged in ASA-treated mice, infiltration of inflammatory cells was increased concomitantly with higher G-CSF and serotonin concentrations in the lungs. Pulmonary NO production was compromised compared to control 4T1 mice. ASA treatment also evoked an increase in platelet and granulocyte counts and decreased systemic NO bioavailability along with increased markers of systemic oxidant stress such as higher GSSG/lower GSH concentrations in RBC. Analysis of eicosanoids in stirred blood demonstrated that administration of ASA at a dose of 12 mg·kg-1 to cancer-bearing mice had an effect beyond inhibition of platelet COX-1, suggesting long-term treatment with low-dose aspirin is not a selective murine platelet COX-1/TXA2 pathway inhibitor in cancer-bearing mice. In summary, quite surprisingly, long-term treatment with low-dose ASA administered until the advanced phase of breast cancer in a murine orthotopic model of 4T1 breast cancer negatively affected the phenotype of the disease.


Subject(s)
Aspirin/therapeutic use , Breast Neoplasms/drug therapy , Lung Neoplasms/drug therapy , Animals , Aspirin/administration & dosage , Breast Neoplasms/pathology , Disease Models, Animal , Disease Progression , Female , Lung Neoplasms/secondary , Mice , Platelet Aggregation Inhibitors/therapeutic use
11.
Biochem Pharmacol ; 176: 113886, 2020 06.
Article in English | MEDLINE | ID: mdl-32113813

ABSTRACT

Overwhelming evidence suggests that platelets have a detrimental role in promoting cancer spread via platelet-cancer cell interactions linked to thrombotic mechanisms. On the other hand, a beneficial role of platelets in the preservation of the endothelial barrier in inflammatory conditions has been recently described, a phenomenon that could also operate in cancer-related inflammation. It is tempting to speculate that some antiplatelet strategies to combat cancer metastasis may impair the endogenous platelet-dependent mechanisms preserving endothelial barrier function. If the protective function of platelets is impaired, it may lead to increased endothelial permeability and more efficient cancer cell intravasation in the primary tumor and cancer cell extravasation at metastatic sites. In this commentary, we discuss current evidence that could support this hypothesis.


Subject(s)
Blood Platelets/physiology , Endothelium/physiology , Neoplasms/blood , Platelet Activation , Animals , Blood Platelets/cytology , Cell Communication , Endothelium/cytology , Humans , Inflammation/blood , Neoplasm Metastasis , Neoplasms/blood supply , Neoplasms/pathology , Thrombosis/blood
12.
Molecules ; 25(1)2020 Jan 06.
Article in English | MEDLINE | ID: mdl-31935974

ABSTRACT

This work focused on a detailed assessment of lung tissue affected by metastasis of breast cancer. We used large-area chemical scanning implemented in Fourier transform infrared (FTIR) spectroscopic imaging supported with classical histological and morphological characterization. For the first time, we differentiated and defined biochemical changes due to metastasis observed in the lung parenchyma, atelectasis, fibrous, and muscle cells, as well as bronchi ciliate cells, in a qualitative and semi-quantitative manner based on spectral features. The results suggested that systematic extracellular matrix remodeling with the progress of the metastasis process evoked a decrease in the fraction of the total protein in atelectasis, fibrous, and muscle cells, as well as an increase of fibrillar proteins in the parenchyma. We also detected alterations in the secondary conformations of proteins in parenchyma and atelectasis and changes in the level of hydroxyproline residues and carbohydrate moieties in the parenchyma. The results indicate the usability of FTIR spectroscopy as a tool for the detection of extracellular matrix remodeling, thereby enabling the prediction of pre-metastatic niche formation.


Subject(s)
Breast Neoplasms/pathology , Extracellular Matrix , Lung Neoplasms/metabolism , Lung Neoplasms/secondary , Spectroscopy, Fourier Transform Infrared , Animals , Disease Models, Animal , Extracellular Matrix/chemistry , Extracellular Matrix/metabolism , Female , Humans , Immunohistochemistry , Mice
13.
J Biophotonics ; 12(10): e201900067, 2019 10.
Article in English | MEDLINE | ID: mdl-31265171

ABSTRACT

Despite advanced diagnostic techniques used for detecting cancer, this disease still remains a leading cause of death in the developed world. What is more, the greatest danger for patients is not related with growing of tumor but rather with metastasis of cancer cells to the distant organs. In this study, Fourier transform infrared (FTIR) spectroscopy was used to track chemical changes in blood plasma to find spectral markers of metastatic breast cancer during the disease progression. Plasma samples were taken 1-5 weeks after orthotropic inoculation of 4T1 metastatic breast cancer cells to mice. The earliest changes detected by FTIR spectroscopy in plasma were correlated with unsaturation of phospholipids and secondary structures of proteins that appeared 2 and 3 weeks, respectively, after 4T1 cells inoculation (micrometastatic phase). Significant alternations in the content and structure of lipids and carbohydrates were identified in plasma at the later stages (macrometastatic phase). When large primary tumors in breast and macrometastases in lung were developed, all bands in FTIR spectra significantly differed from those at earlier phases of the cancer progression. In conclusion, we showed that each phase of the breast cancer progression and its pulmonary metastasis can be characterized by a specific panel of spectral markers.


Subject(s)
Breast Neoplasms/pathology , Disease Progression , Lung Neoplasms/blood , Lung Neoplasms/secondary , Plasma/metabolism , Spectroscopy, Fourier Transform Infrared , Animals , Cell Line, Tumor , Mice
14.
J Biophotonics ; 12(4): e201800345, 2019 04.
Article in English | MEDLINE | ID: mdl-30548409

ABSTRACT

Using high definition (HD) and ultra-high definition (UHD) of Fourier-transform infrared (FTIR) spectroscopic imaging, we characterized spectrally pulmonary metastases in a murine model of breast cancer comparing them with histopathological results (Hematoxylin and eosin [H&E] staining). This comparison showed excellent agreement between the methods in case of localization of metastases with size below 1 mm and revealed that label-free HD and UHD IR spectral histopathology distinguish the type of neoplastic cells. We primary focused on differentiation between metastatic foci in the pleural cavity from cancer cells present in lung parenchyma and inflamed cells present in extracellular matrix of lungs due to growing of advanced metastases. In addition, a combination of unsupervised clustering and IR imaging indicated the high sensitivity of FTIR spectroscopy to identify chemical features of small macrometastases located under the pleural cavity and during epithelial-mesenchymal transition. FTIR-based spectral histopathology was proved to detect not only phases of breast cancer metastasis to lungs but also to differentiate various origins of metastases seeded from breast cancer.


Subject(s)
Breast Neoplasms/pathology , Lung Neoplasms/pathology , Lung Neoplasms/secondary , Molecular Imaging , Signal-To-Noise Ratio , Spectroscopy, Fourier Transform Infrared , Animals , Cell Line, Tumor , Lung Neoplasms/diagnostic imaging , Mice
15.
Biochim Biophys Acta Mol Basis Dis ; 1864(11): 3574-3584, 2018 11.
Article in English | MEDLINE | ID: mdl-30251677

ABSTRACT

An application of FTIR spectroscopic imaging for the identification and visualization of early micrometastasis from breast cancer to lungs in a murine model is shown. Spectroscopic and histological examination is focused on lung cross-sections derived from animals at the early phase of metastasis (early micrometastasis, EM) as compared to healthy control (HC) and late phase of metastasis (advanced macrometastasis, AM) using murine model of metastatic breast cancer with 4T1 cells orthotopically inoculated. FTIR imaging allows for a detailed, objective and label-free differentiation and visualization of EM foci including large and small micrometastases as well as single cancer cells grouped in clusters. An effect of the EM phase on the entire lung tissue matrix as well as characteristic biochemical profiles for HC and advanced macrometastasis were determined from morphological and spectroscopic points of view. The extraordinary sensitivity of FTIR imaging toward EM detection and discrimination of AM borders confirms its applicability as a complementary tool for the histopathological assessment of the metastatic cancer progression.


Subject(s)
Adenocarcinoma of Lung/pathology , Breast Neoplasms/pathology , Neoplasm Micrometastasis/pathology , Spectroscopy, Fourier Transform Infrared , Adenocarcinoma of Lung/secondary , Animals , Extracellular Matrix/pathology , Female , Lung/pathology , Mice , Mice, Inbred BALB C , Sensitivity and Specificity , Single-Cell Analysis/methods , Xenograft Model Antitumor Assays
16.
Breast Cancer Res ; 20(1): 86, 2018 08 03.
Article in English | MEDLINE | ID: mdl-30075800

ABSTRACT

BACKGROUND: Mesenchymal transformation of pulmonary endothelial cells contributes to the formation of a metastatic microenvironment, but it is not known whether this precedes or follows early metastasis formation. In the present work, we characterize the development of nitric oxide (NO) deficiency and markers of endothelial-mesenchymal transition (EndMT) in the lung in relation to the progression of 4T1 metastatic breast cancer injected orthotopically in mice. METHODS: NO production, endothelial nitric oxide synthase (eNOS) phosphorylation status, markers of EndMT in the lung, pulmonary endothelium permeability, and platelet activation/reactivity were analyzed in relation to the progression of 4T1 breast cancer metastasis to the lung, as well as to lung tissue remodeling, 1-5 weeks after 4T1 cancer cell inoculation in Balb/c mice. RESULTS: Phosphorylation of eNOS and NO production in the lungs of 4T1 breast cancer-bearing mice was compromised prior to the development of pulmonary metastasis, and was associated with overexpression of Snail transcription factor in the pulmonary endothelium. These changes developed prior to the mesenchymal phenotypic switch in the lungs evidenced by a decrease in vascular endothelial-cadherin (VE-CAD) and CD31 expression, and the increase in pulmonary endothelial permeability, phenomena which coincided with early pulmonary metastasis. Increased activation of platelets was also detected prior to the early phase of metastasis and persisted to the late phase of metastasis, as evidenced by the higher percentage of unstimulated platelets binding fibrinogen without changes in von Willebrand factor and fibrinogen binding in response to ADP stimulation. CONCLUSIONS: Decreased eNOS activity and phosphorylation resulting in a low NO production state featuring pulmonary endothelial dysfunction was an early event in breast cancer pulmonary metastasis, preceding the onset of its phenotypic switch toward a mesenchymal phenotype (EndMT) evidenced by a decrease in VE-CAD and CD31 expression. The latter coincided with development of the first metastatic nodules in the lungs. These findings suggest that early endothelial dysfunction featured by NO deficiency rather than EndMT, might represent a primary regulatory target to prevent early pulmonary metastasis.


Subject(s)
Breast Neoplasms/pathology , Endothelium, Vascular/pathology , Lung Neoplasms/pathology , Lung/pathology , Nitric Oxide/deficiency , Animals , Cell Line, Tumor/transplantation , Disease Models, Animal , Disease Progression , Endothelial Cells/metabolism , Endothelial Cells/pathology , Endothelium, Vascular/metabolism , Epithelial-Mesenchymal Transition , Female , Humans , Lung/blood supply , Lung Neoplasms/secondary , Mice , Mice, Inbred BALB C , Nitric Oxide Synthase Type III/metabolism , Phosphorylation
17.
Oncotarget ; 9(25): 17810-17824, 2018 Apr 03.
Article in English | MEDLINE | ID: mdl-29707148

ABSTRACT

Platelet inhibition has been considered an effective strategy for combating cancer metastasis and compromising disease malignancy although recent clinical data provided evidence that long-term platelet inhibition might increase incidence of cancer deaths in initially cancer-free patients. In the present study we demonstrated that dual anti-platelet therapy based on aspirin and clopidogrel (ASA+Cl), a routine regiment in cardiovascular patients, when given to cancer-bearing mice injected orthotopically with 4T1 breast cancer cells, promoted progression of the disease and reduced mice survival in association with induction of vascular mimicry (VM) in primary tumour. In contrast, treatment with ASA+Cl or platelet depletion did reduce pulmonary metastasis in mice, if 4T1 cells were injected intravenously. In conclusion, distinct platelet-dependent mechanisms inhibited by ASA+Cl treatment promoted cancer malignancy and VM in the presence of primary tumour and afforded protection against pulmonary metastasis in the absence of primary tumour. In view of our data, long-term inhibition of platelet function by dual anti-platelet therapy (ASA+Cl) might pose a hazard when applied to a patient with undiagnosed and untreated malignant cancer prone to undergo VM.

18.
Med Sci Sports Exerc ; 50(7): 1405-1412, 2018 07.
Article in English | MEDLINE | ID: mdl-29470281

ABSTRACT

INTRODUCTION: An acute bout of strenuous exercise in humans results in transient impairment of nitric oxide (NO)-dependent function, but it remains unknown whether this phenomenon is associated with increased risk of thrombotic events after exercise. This study aimed to evaluate effects of a single bout of exhaustive running in mice on the balance of vascular NO/reactive oxygen species production, and on thrombogenicity. METHODS: At different time points (0, 2, and 4 h) after exercise and in sedentary C57BL/6 mice, the production of NO and superoxide (O2) in aorta was measured by electron paramagnetic resonance spin trapping and by dihydroethidium/high-performance liquid chromatography-based method, respectively, whereas collagen-induced thrombus formation was analyzed in a microchip-based flow-chamber system (total thrombus-formation analysis system). We also measured pre- and postexercise plasma concentration of nitrite/nitrate and 6-keto-PGF1α. RESULTS: An acute bout of exhaustive running in mice resulted in decreased production of NO and increased production of O2 in aorta, with maximum changes 2 h after completion of exercise when compared with sedentary mice. However, platelet thrombus formation was not changed by exercise as evidenced by unaltered time to start of thrombus formation, capillary occlusion time, and total thrombogenicity (area under the flow pressure curve) as measured in a flow-chamber system. Strenuous exercise increased the plasma concentration of nitrite but did not affect nitrate and 6-keto-PGF1α concentrations. CONCLUSION: An acute bout of strenuous exercise in mice reduced NO and in parallel increased O2 production in aorta. This response was most pronounced 2 h after exercise. Surprisingly, the reduced NO and increased O2 production in mice after exercise did not result in increased platelet-dependent thrombogenicity. These results show that transient reduction in NO bioavailability does not modify thromboresistance in healthy mice after exercise.


Subject(s)
Aorta/physiology , Nitric Oxide/metabolism , Physical Conditioning, Animal/adverse effects , Superoxides/metabolism , Thrombosis/etiology , 6-Ketoprostaglandin F1 alpha/blood , Animals , Male , Mice, Inbred C57BL , Nitrates/blood , Nitrites/blood , Oxygen/metabolism , Thrombosis/pathology
19.
Am J Cancer Res ; 7(9): 1926-1936, 2017.
Article in English | MEDLINE | ID: mdl-28979814

ABSTRACT

It has been repeatedly shown that regular aerobic exercise exerts beneficial effects on incidence and progression of cancer. However, the data regarding effects of exercise on metastatic dissemination remain conflicting. Therefore, in the present study the possible preventive effects of voluntary wheel running on primary tumor growth and metastases formation in the model of spontaneous pulmonary metastasis were analyzed after orthotopic injection of 4T1 breast cancer cells into mammary fat pads of female Balb/C mice. This study identified that in the mice injected with 4T1 breast cancer cells and running on the wheels (4T1 ex) the volume and size of the primary tumor were not affected, but the number of secondary nodules formed in the lungs was significantly increased compared to their sedentary counterparts (4T1 sed). This effect was associated with decreased NO production in the isolated aorta of exercising mice (4T1 ex), suggesting deterioration of endothelial function that was associated with lower platelet count without their overactivation. This was evidenced by comparable selectin P, active GPIIb/IIIa expression, fibrinogen and vWF binding on the platelet surface. In conclusion, voluntary wheel running appeared to impair, rather than improve endothelial function, and to promote, but not decrease metastasis in the murine orthotopic model of metastatic breast cancer. These results call for revising the notion of the persistent beneficial effects of voluntary exercise on breast cancer progression, though further studies are needed to elucidate mechanisms involved in pro-metastatic effects of voluntary exercise.

SELECTION OF CITATIONS
SEARCH DETAIL
...