Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Coord Chem Rev ; 255(19-20): 2258-2269, 2011 Oct.
Article in English | MEDLINE | ID: mdl-23049138

ABSTRACT

The effects of oral treatment of rats with streptozotocin-induced diabetes with a range of vanadium dipicolinate complexes (Vdipic) and derivatives are reviewed. Structure-reactivity relationships are explored aiming to correlate properties such as stability, to their insulin-enhancing effects. Three types of modifications are investigated; first, substitutions on the aromatic ring, second, coordination of a hydroxylamido group to the vanadium, and third, changes in the oxidation state of the vanadium ion. These studies allowed us to address the importance of coordination chemistry, and redox chemistry, as modes of action. Dipicolinate was originally chosen as a ligand because the dipicolinatooxovanadium(V) complex (V5dipic), is a potent inhibitor of phosphatases. The effect of vanadium oxidation state (3, 4 or 5), on the insulin-enhancing properties was studied in both the Vdipic and VdipicCl series. Effects on blood glucose, body weight, serum lipids, alkaline phosphatase and aspartate transaminase were selectively monitored. Statistically distinct differences in activity were found, however, the trends observed were not the same in the Vdipic and VdipicCl series. Interperitoneal administration of the Vdipic series was used to compare the effect of administration mode. Correlations were observed for blood vanadium and plasma glucose levels after V5dipic treatment, but not after treatment with corresponding V4dipic and V3dipic complexes. Modifications of the aromatic ring structure with chloride, amine or hydroxyl groups had limited effects. Global gene expression was measured using Affymetrix oligonucleotide chips. All diabetic animals treated with hydroxyl substituted V5dipic (V5dipicOH) and some diabetic rats treated with vanadyl sulfate had normalized hyperlipidemia yet uncontrolled hyperglycemia and showed abnormal gene expression patterns. In contrast to the normal gene expression profiles previously reported for some diabetic rats treated with vanadyl sulfate, where both hyperlipidemia and hyperglycemia were normalized. Modification of the metal, changing the coordination chemistry to form a hydroxylamine ternary complex, had the most influence on the anti-diabetic action. Vanadium absorption into serum was determined by atomic absorption spectroscopy for selected vanadium complexes. Only diabetic rats treated with the ternary V5dipicOH hydroxylamine complex showed statistically significant increases in accumulation of vanadium into serum compared to diabetic rats treated with vanadyl sulfate. The chemistry and physical properties of the Vdipic complexes correlated with their anti-diabetic properties. Here, we propose that compound stability and ability to interact with cellular redox reactions are key components for the insulin-enhancing activity of vanadium compounds. Specifically, we found that the most overall effective anti-diabetic Vdipic compounds were obtained when the compound administered had an increased coordination number in the vanadium complex.

2.
Biometals ; 22(6): 895-905, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19404749

ABSTRACT

Vanadium(III, IV, V)-chlorodipicolinate (dipic-Cl) complexes, including H[VIII(dipic-Cl)2] · 5H2O (V3dipic-Cl), VIVO(dipic-Cl)(H2O)2 (V4dipic-Cl) and K[VVO2(dipic-Cl)] (V5dipic-Cl), were prepared with the indicated oxidation states. Our aim was to evaluate the anti-diabetic effects of V3dipic-Cl, V4dipic-Cl and V5dipic-Cl in streptozotocin-induced diabetic rats. Vanadium complexes were orally administered to diabetic rats at concentrations of 0.1-0.3 mg/ml in the drinking water. We found that vanadium-chlorodipicolinate (V-dipic-Cl) complexes at the concentration of 0.1 mg/ml did not exhibit blood glucose-lowering effects when administered to diabetic rats for 20 days. However, the levels of fasting blood glucose in diabetic rats were decreased after treatment with 0.3 mg/ml of V4dipic-Cl and V5dipic-Cl complexes for the following 20 days. Although administration of both V4dipic-Cl and V5dipic-Cl significantly lowered diabetic hyperglycemia, the vanadium intake from administration of V4dipic-Cl is nearly 1.5-fold greater compared to that of V5dipic-Cl. Treatment with the H2dipic-Cl ligand and all three V-dipic-Cl complexes significantly lowered serum cholesterol, while administration of the V5dipic-Cl complex lowered serum cholesterol significantly more than administration of the ligand alone. Treatment with ligand alone did not have an effect on serum triglyceride, while administration of the V4dipic-Cl and V5dipic-Cl significantly lowered the elevated serum triglyceride associated with diabetes. Oral administration of the ligand and all V-dipic-Cl complexes did significantly lower diabetes elevated serum alkaline phosphatase. Treatment with H2dipic-Cl ligand and V4dipic-Cl and V5dipicCl significantly lowered diabetes elevated aspartate amino transferase. These results indicate that the health of the treated animals did not seem to be further compromised compared to that of diabetic animals. In addition, oral administration of H2dipic-Cl, V3dipic-Cl, V4dipic-Cl and V5dipic-Cl did not alter diabetic serum creatinine and blood urea nitrogen levels, suggesting no significant side effects of vanadium treatment on renal functions at the dose of 0.3 mg/ml in diabetic rats. The results presented here suggest that the anti-diabetic effects of treatment with V-dipic-Cl complexes were likely associated in part with the oxidation state of vanadium.


Subject(s)
Blood Glucose/drug effects , Diabetes Mellitus, Experimental/drug therapy , Hypoglycemic Agents/therapeutic use , Vanadates/therapeutic use , Administration, Oral , Alkaline Phosphatase/blood , Animals , Aspartate Aminotransferases/blood , Blood Glucose/analysis , Blood Urea Nitrogen , Chlorine/chemistry , Cholesterol/blood , Creatinine/blood , Diabetes Mellitus, Experimental/blood , Diabetes Mellitus, Experimental/chemically induced , Diabetes Mellitus, Experimental/physiopathology , Disease Models, Animal , Hypoglycemic Agents/administration & dosage , Hypoglycemic Agents/blood , Hypoglycemic Agents/chemical synthesis , Insulin/blood , Kidney Function Tests , Oxidation-Reduction , Picolinic Acids/chemistry , Rats , Rats, Wistar , Streptozocin/toxicity , Triglycerides/blood , Vanadates/administration & dosage , Vanadates/blood , Vanadates/chemical synthesis , Vanadium/chemistry
3.
J Inorg Biochem ; 103(4): 575-84, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19201030

ABSTRACT

Three vanadium complexes of chlorodipicolinic acid (4-chloro-2,6-dipicolinic acid) in oxidation states III, IV, and V were prepared and their properties characterized across the oxidation states. In addition, the series of hydroxylamido, methylhydroxylamido, dimethylhydroxylamido, and diethylhydroxylamido complexes were prepared from the chlorodipicolinato dioxovanadium(V) complex. The vanadium(V) compounds were characterized in solution by (51)V and (1)H NMR and in the solid-state by X-ray diffraction and (51)V NMR. Density Functional Theory (DFT) calculations were performed to evaluate the experimental parameters and further describes the electronic structure of the complex. The small structural changes that do occur in bond lengths and angles and partial charges on different atoms are minor compared to the charge features that are responsible for the majority of the electric field gradient tensor. The EPR parameters of the vanadium(IV) complex were characterized and compared to the corresponding dipicolinate complex. The chemical properties of the chlorodipicolinate compounds are discussed and correlated with their insulin-enhancing activity in streptozoticin (STZ) induced diabetic Wistar rats. The effect of the chloro-substitution on lowering diabetic hyperglycemia was evaluated and differences were found depending on the compounds oxidation state similar as was observed for the vanadium III, IV and V dipicolinate complexes (P. Buglyo, D.C. Crans, E.M. Nagy, R.L. Lindo, L. Yang, J.J. Smee, W. Jin, L.-H. Chi, M.E. Godzala III, G.R. Willsky, Inorg. Chem. 44 (2005) 5416-5427). However, a linear correlation of oxidation states with efficacy was not observed, which suggests that the differences in mode of action are not simply an issue of redox equivalents. Importantly, our results contrast the previous observation with the vanadium-picolinate complexes, where the halogen substituents increased the insulin-enhancing properties of the complex (T. Takino, H. Yasui, A. Yoshitake, Y. Hamajima, R. Matsushita, J. Takada, H. Sakurai, J. Biol. Inorg. Chem. 6 (2001) 133-142).


Subject(s)
Hypoglycemic Agents/chemistry , Insulin/pharmacology , Picolinic Acids/chemistry , Vanadium Compounds/chemistry , Animals , Diabetes Mellitus, Experimental/drug therapy , Electron Spin Resonance Spectroscopy , Hypoglycemic Agents/pharmacology , Insulin/metabolism , Magnetic Resonance Spectroscopy , Oxidation-Reduction , Picolinic Acids/pharmacology , Rats , Rats, Wistar , Vanadium Compounds/pharmacology
4.
J Inorg Biochem ; 103(4): 585-9, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19203797

ABSTRACT

The evaluation of the anti-diabetic effects of an organic vanadium(V) complex in streptozotocin (STZ)-induced diabetic rats was investigated. The STZ-induced diabetic rats were orally administrated with sodium 4-amino-2,6-dipicolinatodioxovanadium(V) dihydrate (V5dipic-NH(2)), a vanadium(V) coordination compound. The compound was administered through drinking water at a concentration of 0.1mg/mL for 20 days, and then the concentration was increased to 0.3mg/mL for the following 20 days. At the end of the experiment, V5dipic-NH(2) statistically significantly reduced the levels of blood glucose (P<0.01), serum total cholesterol (P<0.01), triglycerides (P<0.01) and the activities of serum aspartate amino transferase (P<0.05) and alkaline phosphatase (P<0.01) compared to untreated diabetic animals. After treatment with 0.3mg/mL V5dipic-NH(2), the oral glucose tolerance was improved in diabetic animals (P<0.01). In addition, the daily intake of elemental vanadium was markedly decreased in V5dipic-NH(2)-treated diabetic rats compared to vanadyl sulfate (VOSO(4))-treated diabetic rats, which suggested that the anti-diabetic activity of the element vanadium was elevated after being modified with an organic ligand. These results suggested that V5dipic-NH(2), as an organic vanadium compound, is more effective than inorganic vanadium salt at alleviating the symptoms of diabetes.


Subject(s)
Hypoglycemic Agents/administration & dosage , Organometallic Compounds/administration & dosage , Vanadium Compounds/administration & dosage , Animals , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Type 2/drug therapy , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Male , Organometallic Compounds/pharmacology , Rats , Rats, Wistar , Streptozocin/pharmacology , Time Factors , Vanadium Compounds/pharmacology , Vanadium Compounds/therapeutic use
5.
J Chem Phys ; 128(5): 052317, 2008 Feb 07.
Article in English | MEDLINE | ID: mdl-18266434

ABSTRACT

(51)V solid-state NMR and density functional theory (DFT) investigations are reported for a series of pentacoordinate dioxovanadium(V)-dipicolinate [V(V)O(2)-dipicolinate] and heptacoordinate aquahydroxylamidooxovanadium(V)-dipicolinate [V(V)O-dipicolinate] complexes. These compounds are of interest because of their potency as phosphatase inhibitors as well as their insulin enhancing properties and potential for the treatment of diabetes. Experimental solid-state NMR results show that the electric field gradient tensors in the V(V)O(2)-dipicolinate derivatives are affected significantly by substitution on the dipicolinate ring and range from 5.8 to 8.3 MHz. The chemical shift anisotropies show less dramatic variations with respect to the ligand changes and range between -550 and -600 ppm. To gain insights on the origins of the NMR parameters, DFT calculations were conducted for an extensive series of the V(V)O(2)- and V(V)O-dipicolinate complexes. To assess the level of theory required for the accurate calculation of the (51)V NMR parameters, different functionals, basis sets, and structural models were explored in the DFT study. It is shown that the original x-ray crystallographic geometries, including all counterions and solvation water molecules within 5 A of the vanadium, lead to the most accurate results. The choice of the functional and the basis set at a high level of theory has a relatively minor impact on the outcome of the chemical shift anisotropy calculations; however, the use of large basis sets is necessary for accurate calculations of the quadrupole coupling constants for several compounds of the V(V)O(2) series. These studies demonstrate that even though the vanadium compounds under investigations exhibit distorted trigonal bipyramidal coordination geometry, they have a "perfect" trigonal bipyramidal electronic environment. This observation could potentially explain why vanadate and vanadium(V) adducts are often recognized as potent transition state analogs.


Subject(s)
Organometallic Compounds/chemistry , Picolinic Acids/chemistry , Vanadium , Isotopes , Magnetic Resonance Spectroscopy/methods
6.
Inorg Chem ; 46(23): 9827-40, 2007 Nov 12.
Article in English | MEDLINE | ID: mdl-17941629

ABSTRACT

A number of 4-substituted, dipicolinatodioxovanadium(V) complexes and their hydroxylamido derivatives were synthesized to characterize the solid state and solution properties of five- and seven-coordinate vanadium(V) complexes. The X-ray crystal structures of Na[VO2dipic-NH2].2H2O (2) and K[VO2dipic-NO2] (3) show the vanadium adopting a distorted, trigonal-bipyramidal coordination environment similar to the parent coordination complex, [VO2dipic]- (1), reported previously as the Cs+ salt. The observed differences in the chemical shifts of the complexes both in the 1H (ca. 0.7-1.4 ppm) and 51V (ca. 1-11 ppm) NMR spectra were consistent with the electron-donating or electron-withdrawing properties of the substituent groups, respectively. Stoichiometric addition of a series of hydroxylamine ligands (H2NOH, MeHNOH, Me2NOH, and Et2NOH) to complexes 1-3 led to the formation of seven-coordinate vanadium(V) complexes. The X-ray crystal structure of [VO(dipic)(Me2NO)(H2O)].0.5H2O (1c) was found to be similar to the previously characterized complexes [VO(dipic)(H2NO)(H2O)] (1a) and [VO(dipic)(OO-tBu)(H2O)]. While only slight differences in the 1H NMR spectra were observed upon addition of the hydroxylamido ligand, the signals in the 51V NMR spectra change by up to 100 ppm. The addition of the hydroxylamido ligand increased the complex stability of complexes 2 and 3. Evidence for a nonstoichiometric redox reaction was found for the monoalkyl hydroxylamine ligand. The reaction of an unsaturated five-coordinate species with a hydroxylamine to form a seven-coordinate vanadium complex will, in general, dramatically increase the amounts of the vanadium compound that remain intact at pH values near neutral.


Subject(s)
Vanadium Compounds/chemical synthesis , Amides/chemistry , Magnetic Resonance Spectroscopy , Models, Molecular , Picolinic Acids/chemistry , Solubility , Vanadium Compounds/chemistry , Water/chemistry
7.
Inorg Chem ; 46(22): 9285-93, 2007 Oct 29.
Article in English | MEDLINE | ID: mdl-17902653

ABSTRACT

Using (51)V magic angle spinning solid-state NMR, SSNMR, spectroscopy and quantum chemical DFT calculations we have characterized the chemical shift and quadrupolar coupling parameters of a series of eight hydroxylamido vanadium(V) dipicolinate complexes of the general formula VO(dipic)(ONR1R2)(H2O) where R1 and R2 can be H, CH3, or CH2CH3. This class of vanadium compounds was chosen for investigation because of their seven-coordinate vanadium atom, a geometry for which there is limited (51)V SSNMR data. Furthermore, a systematic series of compounds with different electronic properties are available and allows for the effects of ligand substitution on the NMR parameters to be studied. The quadrupolar coupling constants, C(Q), are small, 3.0-3.9 MHz, but exhibit variations as a function of the ligand substitution. The chemical shift tensors in the solid state are sensitive to changes in both the hydroxylamide substituent and the dipic ligand, a sensitivity which is not observed for isotropic chemical shifts in solution. The chemical shift tensors span approximately 1000 ppm and are nearly axially symmetric. On the basis of DFT calculations of the chemical shift tensors, one of the largest contributors to the magnetic shielding anisotropy is an occupied molecular orbital with significant vanadium d(z)2 character along the V=O bond.


Subject(s)
Magnetic Resonance Spectroscopy/methods , Picolinic Acids/chemistry , Vanadium/chemistry , Amides/chemistry , Quantum Theory
8.
J Immunotoxicol ; 4(1): 49-60, 2007 Jan.
Article in English | MEDLINE | ID: mdl-18958712

ABSTRACT

The in situ reactions of metal ions/complexes are important in understanding the mechanisms by which environmental and occupational metal particles alter lung immune responses. A better understanding of these reactions in situ will also allow for the improved specificity and controlled toxicity of novel metallocompounds to be used as inhaled diagnostics or therapeutics. Our previous work showed that inhalation of metals (e.g., chromium, vanadium, nickel) caused altered lung immune cell function and host resistance. The data also suggested that the degree of immunomodulation induced depended not only on the amount of metal deposited, but also the compound used. If specificity governs pulmonary immunomodulatory potential, it follows that physicochemical properties inherent to the metal have a role in the elicited effects. We hypothe-size that major determinants of any metal compound's potential are its redox behavior, valency (generally referred to as oxidation state and considered speciation in chemical literature), and/or solubility. In accord with the extensive work carried out with vanadium (chemical symbol V) compounds showing the importance of form used, differences in potential for a range of V agents (pentavalent [V(V)] insoluble vanadium pentoxide and soluble sodium metavanadate, tetravalent [V(IV)] vanadyl dipicolinate, and trivalent [V(III)] bis(dipicolinato)vanadium) were quantified based on induced changes in local bacterial resistance after host inhalation of each agent at 100 mu g V/m(3) (5 hr/d for 5 d). Differences in effect between V(V) forms indicated that solubility was a critical property in in situ pulmonary immunotoxicity. Among the soluble forms, oxidizing vanadate had the greatest impact on resistance; reducing V(III) altered resistance to a lesser extent. Both the V(IV) and insoluble V(V) had no effect. When data was analyzed in the context of pre-infection lung V burdens, soluble V agents with different oxidation states induced varying responses, supporting the hypothesis that differences in immunomodulatory potential might be attributed to redox behavior or valency. Our findings both provide a basis for understanding why some metals could be a greater health risk than others (when encountered in equal amounts) and will assist in the design of inhalable metallopharmaceuticals by allowing researchers to preempt selection of certain metal ions or complexes for use in such products.

9.
J Immunotoxicol ; 3(2): 69-81, 2006 Jul 01.
Article in English | MEDLINE | ID: mdl-18958687

ABSTRACT

Increasing the understanding of how metal ions/complexes react in situ will allow for the improved specificity and controlled toxicity of novel synthetic metallocompounds that will be used as inhaled diagnostics or therapeutics. Our previous work showed that inhalation of select metals (e.g., chromium, vanadium, nickel, iron) caused alterations in lung immune cell function and in local bacterial resistance. The data also suggested that variations in the degree of immuno-modulation induced were not solely dependent on the amount of metal deposited in the lung, but also on the specific compound. If specificity governs immunomodulatory potential, it follows that physicochemical properties inherent to the metal may have a role in the elicited effects. We hypothesize that major determinants of any metal compound's immunomodulatory potential in situ are its redox behavior, valency, and/or solubility. Using changes in local bacterial resistance as an endpoint, differences in immunotoxic potential in the lungs were quantified for a range of chromium agents (insoluble calcium chromate(VI), and soluble sodium chromate(VI), potassium bis(dipicolinato)chromate(III) and sodium bis(dipicolinato)chromate(II)). Results indicated that among the latter three forms of Cr, strongly oxidizing hexavalent Cr (Cr[VI]) had the greatest impact on resistance, while reducing divalent and fairly unreactive trivalent forms of Cr had no effect at an equal exposure level (i.e., 100 microg Cr/m(3), 5 hr/d, for 5 d). Insoluble Cr(VI) had a greater effect than its soluble form. When data was analyzed in the context of pre-infection lung Cr burdens, it was seen that immunomodulatory potentials for both Cr(VI) agents did not differ significantly; however, complexes with different oxidation states did induce varying responses, suggesting that differences in potential might be attributed to redox behavior. From this it was concluded that for Cr, certain physicochemical properties are likely more important to any in situ pulmonary immunotoxicity than others (i.e., redox behavior is more critical than solubility). Our findings, in part, will help provide a basis for understanding why certain metals could be a greater health risk than others, even when encountered in equal amounts. This, in turn, will help researchers in the design of inhalable diagnostic/therapeutic metallopharmaceuticals by pre-empting the selection of certain metal ions/complexes for potential use in these products.

10.
Inorg Chem ; 44(15): 5416-27, 2005 Jul 25.
Article in English | MEDLINE | ID: mdl-16022540

ABSTRACT

The aqueous vanadium(III) (V(III)) speciation chemistry of two dipicolinate-type complexes and the insulin-enhancing effects of V-dipicolinate (V-dipic) complexes in three different oxidation states (V(III), V(IV), and V(V)) have been studied in a chronic animal model system. The characterization of the V(III) species was carried out at low ionic strength to reflect physiological conditions and required an evaluation of the hydrolysis of V(III) at 0.20 M KCl. The aqueous V(III)-dipic and V(III)-dipic-OH systems were characterized, and complexes were observed from pH 2 to 7 at 0.2 M KCl. The V(III)-dipic system forms stable 1:2 complexes, whereas the V(III)-dipic-OH system forms stable 1:1 complexes. A comparison of these complexes with the V-pic system demonstrates that a second ligand has lower affinity for the V(III), presumably reflecting bidentate coordination of the second dipic(2)(-) to the V(III). The thermodynamic stability of the [V(III)(dipic)(2)](-) complex was compared to the stability of the corresponding V(IV) and V(V) complexes, and surprisingly, the V(III) complexes were found to be more stable than anticipated. Oral administration of three V-dipicolinate compounds in different oxidation states {H[V(III)(dipic)(2)H(2)O].3H(2)O, [V(IV)Odipic(H(2)O)(2)].2H(2)O, and NH(4)[V(V)O(2)dipic]} and the positive control, VOSO(4), significantly lowered diabetic hyperglycemia in rats with streptozotocin-induced diabetes. The diabetic animals treated with the V(III)- or V(IV)-dipic complexes had blood glucose levels that were statistically different from those of the diabetic group. The animals treated with the V(V)-dipic complex had the lowest blood glucose levels of the treated diabetic animals, which were statistically different from those of the diabetic group at all time points. Among the diabetic animals, complexation to dipic increased the serum levels of V after the administration of the V(V) and V(IV) complexes but not after the administration of the V(III) complex when data are normalized to the ingested dose of V. Because V compounds differing only in oxidation state have different biological properties, it is implied that redox processes must be important factors for the biological action of V compounds. We observe that the V(V)-dipic complex is the most effective insulin-enhancing agent, in contrast to previous studies in which the V(IV)-maltol complex is the most effective. We conclude that the effectiveness of complexed V is both ligand and oxidation state dependent.


Subject(s)
Diabetes Mellitus, Experimental/complications , Hyperglycemia/drug therapy , Organometallic Compounds/chemistry , Organometallic Compounds/therapeutic use , Picolinic Acids/chemistry , Vanadium/chemistry , Administration, Oral , Animals , Blood Glucose/drug effects , Chemical Phenomena , Chemistry , Diabetes Mellitus, Experimental/chemically induced , Disease Models, Animal , Dose-Response Relationship, Drug , Hydrogen-Ion Concentration , Hyperglycemia/blood , Hyperglycemia/etiology , Molecular Structure , Organometallic Compounds/administration & dosage , Oxidation-Reduction , Picolinic Acids/administration & dosage , Rats , Rats, Wistar , Streptozocin , Vanadium/administration & dosage , Vanadium/blood , Water/chemistry
11.
J Inorg Biochem ; 98(11): 1837-50, 2004 Nov.
Article in English | MEDLINE | ID: mdl-15522411

ABSTRACT

The effects of Mo-hydroxylamido complexes on cell growth were determined in Saccharomyces cerevisiae to investigate the biological effects of four different Mo complexes as a function of pH. Studies with yeast, an eukaryotic cell, are particularly suited to examine growth at different pH values because this organism grows well from pH 3 to 6.5. Studies can therefore be performed both in the presence of intact complexes and when the complexes have hydrolyzed to ligand and free metal ion. One of the complexes we examined was structurally characterized by X-ray crystallography. Yeast growth was inhibited in media solutions containing added Mo-dialkylhydroxylamido complexes at pH 3-7. When combining the yeast growth studies with a systematic study of the Mo-hydroxylamido complexes' stability as a function of pH and an examination of their speciation in yeast media, the effects of intact complexes can be distinguished from that of ligand and metal. This is possible because different effects are observed with complex present than when ligand or metal alone is present. At pH 3, the growth inhibition is attributed to the forms of molybdate ion that exist in solution because most of the complexes have hydrolyzed to oxomolybdate and ligand. The monoalkylhydroxylamine ligand inhibited yeast growth at pH 5, 6 and 7, while the dialkylhydroxylamine ligands had little effect on yeast growth. Growth inhibition of the Mo-dialkylhydroxylamido complexes is observed when a complex exists in the media. A complex that is inert to ligand exchange is not effective even at pH 3 where other Mo-hydroxylamido complexes show growth inhibition as molybdate. These results show that the formation of some Mo complexes can protect yeast from the growth inhibition observed when either the ligand or Mo salt alone are present.


Subject(s)
Hydrogen-Ion Concentration , Hydroxylamines/pharmacology , Molybdenum/pharmacology , Saccharomyces cerevisiae/drug effects , Crystallography, X-Ray , Culture Media , Electrochemistry , Hydroxylamines/chemistry , Kinetics , Models, Molecular , Molecular Conformation , Organometallic Compounds/chemistry , Organometallic Compounds/pharmacology , Saccharomyces cerevisiae/growth & development
13.
Inorg Chem ; 41(7): 1837-44, 2002 Apr 08.
Article in English | MEDLINE | ID: mdl-11925177

ABSTRACT

Complex 1 [(N,N'-dimethyl-N,N'-bis(2-sulfanylethyl)ethylenediamine)nickel(II)], previously shown to react with H(2)O(2) to produce the fully oxygenated disulfonate 5 [diaqua(N,N'-dimethyl-N,N'-bis(2-sulfonatoethyl)ethylenediamine)nickel(II)], has been explored in detail to explain the observed reactivity of this compound and to discern intermediates in the oxygenation reaction. Reaction of 1 with 1 equiv of methyl iodide results in the monomethylated square-planar nickel complex 2 [[(N,N'-dimethyl-N-(2-sulfanylethyl)-N'-(2-methylthioethyl)(ethylenediamine)nickel(II)] iodide], while a slight excess of methyl iodide results in the dimethylated complex 3 [diiodo(N,N'-dimethyl-N,N'-bis(2-methylthioethyl)ethylenediamine)nickel(II)], an X-ray structure of which has shown that the nickel ion is in an octahedral N(2)S(2)I(2) environment. Crystal data of 3: monoclinic, a = 8.865(3) A, b = 14.419(4) A, c = 14.389(6) A, beta = 100.19(3) degrees, V = 1810.2(12) A(3), space group P2(1)/n, Z = 4. The equatorial positions are occupied by the two cis-amine N-atoms and the coordinated iodides, while the axial positions are occupied by the thioether sulfur atoms. In organic solvents, the dithiolate complex 1 reacts with molecular oxygen or H(2)O(2) to produce the mixed sulfinato/thiolato complex 4 [(N,N'-dimethyl-N-(2-sulfanylethyl)-N'-(2-sulfinatoethyl)(ethylenediamine)nickel(II)], and the fully oxidized product 5. X-ray analysis of complex 4 reveals a square-planar geometry in which the nickel ion is coordinated by two cis-amine nitrogens, one thiolate sulfur donor, and one sulfinato sulfur donor. Crystal data of 4: orthorhombic, a = 11.659(2) A, b = 13.119(3) A, c = 16.869(3) A, V = 2580.2(9) A(3), space group Pbca, Z = 8. This complex is the only intermediate in the oxygenation reaction that could be isolated, and it is shown to be further reactive toward O(2) to yield the fully oxidized product 5. For a better understanding of the reactivity observed for 4, DFT calculations have been undertaken, which show a possible reaction path toward the fully oxidized product 5.

SELECTION OF CITATIONS
SEARCH DETAIL
...