Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 5219, 2023 03 30.
Article in English | MEDLINE | ID: mdl-36997591

ABSTRACT

Mice display a wide repertoire of vocalizations that varies with sex, strain, and context. Especially during social interaction, including sexually motivated dyadic interaction, mice emit sequences of ultrasonic vocalizations (USVs) of high complexity. As animals of both sexes vocalize, a reliable attribution of USVs to their emitter is essential. The state-of-the-art in sound localization for USVs in 2D allows spatial localization at a resolution of multiple centimeters. However, animals interact at closer ranges, e.g. snout-to-snout. Hence, improved algorithms are required to reliably assign USVs. We present a novel algorithm, SLIM (Sound Localization via Intersecting Manifolds), that achieves a 2-3-fold improvement in accuracy (13.1-14.3 mm) using only 4 microphones and extends to many microphones and localization in 3D. This accuracy allows reliable assignment of 84.3% of all USVs in our dataset. We apply SLIM to courtship interactions between adult C57Bl/6J wildtype mice and those carrying a heterozygous Foxp2 variant (R552H). The improved spatial accuracy reveals that vocalization behavior is dependent on the spatial relation between the interacting mice. Female mice vocalized more in close snout-to-snout interaction while male mice vocalized more when the male snout was in close proximity to the female's ano-genital region. Further, we find that the acoustic properties of the ultrasonic vocalizations (duration, Wiener Entropy, and sound level) are dependent on the spatial relation between the interacting mice as well as on the genotype. In conclusion, the improved attribution of vocalizations to their emitters provides a foundation for better understanding social vocal behaviors.


Subject(s)
Courtship , Vocalization, Animal , Animals , Mice , Male , Female , Social Behavior , Ultrasonics , Spatial Analysis
2.
Proc Natl Acad Sci U S A ; 119(34): e2208513119, 2022 08 23.
Article in English | MEDLINE | ID: mdl-35969780

ABSTRACT

Spinocerebellar ataxia type 1 (SCA1) is a dominantly inherited neurodegenerative disease characterized by progressive ataxia and degeneration of specific neuronal populations, including Purkinje cells (PCs) in the cerebellum. Previous studies have demonstrated a critical role for various evolutionarily conserved signaling pathways in cerebellar patterning, such as the Wnt-ß-catenin pathway; however, the roles of these pathways in adult cerebellar function and cerebellar neurodegeneration are largely unknown. In this study, we found that Wnt-ß-catenin signaling activity was progressively enhanced in multiple cell types in the adult SCA1 mouse cerebellum, and that activation of this signaling occurs in an ataxin-1 polyglutamine (polyQ) expansion-dependent manner. Genetic manipulation of the Wnt-ß-catenin signaling pathway in specific cerebellar cell populations revealed that activation of Wnt-ß-catenin signaling in PCs alone was not sufficient to induce SCA1-like phenotypes, while its activation in astrocytes, including Bergmann glia (BG), resulted in gliosis and disrupted BG localization, which was replicated in SCA1 mouse models. Our studies identify a mechanism in which polyQ-expanded ataxin-1 positively regulates Wnt-ß-catenin signaling and demonstrate that different cell types have distinct responses to the enhanced Wnt-ß-catenin signaling in the SCA1 cerebellum, underscoring an important role of BG in SCA1 pathogenesis.


Subject(s)
Neuroglia , Purkinje Cells , Spinocerebellar Ataxias , Wnt Signaling Pathway , Animals , Ataxin-1/genetics , Ataxin-1/metabolism , Cerebellum/metabolism , Disease Models, Animal , Mice , Mice, Transgenic , Neuroglia/metabolism , Peptides , Purkinje Cells/metabolism , Spinocerebellar Ataxias/pathology , beta Catenin/genetics , beta Catenin/metabolism
3.
Brain Pathol ; 31(2): 239-252, 2021 03.
Article in English | MEDLINE | ID: mdl-33043513

ABSTRACT

Spinocerebellar ataxia type 23 (SCA23) is a late-onset neurodegenerative disorder characterized by slowly progressive gait and limb ataxia, for which there is no therapy available. It is caused by pathogenic variants in PDYN, which encodes prodynorphin (PDYN). PDYN is processed into the opioid peptides α-neoendorphin and dynorphins (Dyn) A and B; inhibitory neurotransmitters that function in pain signaling, stress-induced responses and addiction. Variants causing SCA23 mostly affect Dyn A, leading to loss of secondary structure and increased peptide stability. PDYNR212W mice express human PDYN containing the SCA23 variant p.R212W. These mice show progressive motor deficits from 3 months of age, climbing fiber (CF) deficits from 3 months of age, and Purkinje cell (PC) loss from 12 months of age. A mouse model for SCA1 showed similar CF deficits, and a recent study found additional developmental abnormalities, namely increased GABAergic interneuron connectivity and non-cell autonomous disruption of PC function. As SCA23 mice show a similar pathology to SCA1 mice in adulthood, we hypothesized that SCA23 may also follow SCA1 pathology during development. Examining PDYNR212W cerebella during development, we uncovered developmental deficits from 2 weeks of age, namely a reduced number of GABAergic synapses on PC soma, possibly leading to the observed delay in early phase CF elimination between 2 and 3 weeks of age. Furthermore, CFs did not reach terminal height, leaving proximal PC dendrites open to be occupied by parallel fibers (PFs). The observed increase in vGlut1 protein-a marker for PF-PC synapses-indicates that PFs indeed take over CF territory and have increased connectivity with PCs. Additionally, we detected altered expression of several critical Ca2+ channel subunits, potentially contributing to altered Ca2+ transients in PDYNR212W cerebella. These findings indicate that developmental abnormalities contribute to the SCA23 pathology and uncover a developmental role for PDYN in the cerebellum.


Subject(s)
Cerebellum/pathology , Enkephalins/genetics , Neurogenesis/genetics , Protein Precursors/genetics , Spinocerebellar Degenerations/genetics , Spinocerebellar Degenerations/pathology , Animals , Cerebellum/growth & development , Humans , Mice , Mice, Transgenic
4.
Brain ; 140(11): 2860-2878, 2017 Nov 01.
Article in English | MEDLINE | ID: mdl-29053796

ABSTRACT

The autosomal dominant cerebellar ataxias, referred to as spinocerebellar ataxias in genetic nomenclature, are a rare group of progressive neurodegenerative disorders characterized by loss of balance and coordination. Despite the identification of numerous disease genes, a substantial number of cases still remain without a genetic diagnosis. Here, we report five novel spinocerebellar ataxia genes, FAT2, PLD3, KIF26B, EP300, and FAT1, identified through a combination of exome sequencing in genetically undiagnosed families and targeted resequencing of exome candidates in a cohort of singletons. We validated almost all genes genetically, assessed damaging effects of the gene variants in cell models and further consolidated a role for several of these genes in the aetiology of spinocerebellar ataxia through network analysis. Our work links spinocerebellar ataxia to alterations in synaptic transmission and transcription regulation, and identifies these as the main shared mechanisms underlying the genetically diverse spinocerebellar ataxia types.


Subject(s)
Gene Regulatory Networks/genetics , Spinocerebellar Ataxias/genetics , Animals , COS Cells , Cadherins/genetics , Chlorocebus aethiops , E1A-Associated p300 Protein/genetics , Exome/genetics , Female , HEK293 Cells , Humans , Kinesins/genetics , Male , Pedigree , Phospholipase D/genetics , Plasmids , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Sequence Analysis, DNA , Transfection
5.
Hum Mol Genet ; 25(13): 2728-2737, 2016 07 01.
Article in English | MEDLINE | ID: mdl-27260403

ABSTRACT

Spinocerebellar ataxia type 23 (SCA23) is caused by missense mutations in prodynorphin, encoding the precursor protein for the opioid neuropeptides α-neoendorphin, Dynorphin (Dyn) A and Dyn B, leading to neurotoxic elevated mutant Dyn A levels. Dyn A acts on opioid receptors to reduce pain in the spinal cord, but its cerebellar function remains largely unknown. Increased concentration of or prolonged exposure to Dyn A is neurotoxic and these deleterious effects are very likely caused by an N-methyl-d-aspartate-mediated non-opioid mechanism as Dyn A peptides were shown to bind NMDA receptors and potentiate their glutamate-evoked currents. In the present study, we investigated the cellular mechanisms underlying SCA23-mutant Dyn A neurotoxicity. We show that SCA23 mutations in the Dyn A-coding region disrupted peptide secondary structure leading to a loss of the N-terminal α-helix associated with decreased κ-opioid receptor affinity. Additionally, the altered secondary structure led to increased peptide stability of R6W and R9C Dyn A, as these peptides showed marked degradation resistance, which coincided with decreased peptide solubility. Notably, L5S Dyn A displayed increased degradation and no aggregation. R6W and wt Dyn A peptides were most toxic to primary cerebellar neurons. For R6W Dyn A, this is likely because of a switch from opioid to NMDA- receptor signalling, while for wt Dyn A, this switch was not observed. We propose that the pathology of SCA23 results from converging mechanisms of loss of opioid-mediated neuroprotection and NMDA-mediated excitotoxicity.


Subject(s)
Dynorphins/metabolism , Spinocerebellar Degenerations/metabolism , Amino Acid Sequence , Animals , Cell Culture Techniques , Computer Simulation , Dynorphins/physiology , Endorphins/metabolism , Enkephalins/genetics , Enkephalins/metabolism , Mice , Mice, Inbred C57BL , N-Methylaspartate/metabolism , Neurons/metabolism , Neurotoxins , Protein Precursors/genetics , Protein Precursors/metabolism , Protein Structure, Secondary , Receptors, N-Methyl-D-Aspartate/metabolism , Signal Transduction , Spinal Cord/metabolism , Spinocerebellar Degenerations/genetics
7.
Brain ; 138(Pt 9): 2537-52, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26169942

ABSTRACT

Spinocerebellar ataxia type 23 is caused by mutations in PDYN, which encodes the opioid neuropeptide precursor protein, prodynorphin. Prodynorphin is processed into the opioid peptides, α-neoendorphin, and dynorphins A and B, that normally exhibit opioid-receptor mediated actions in pain signalling and addiction. Dynorphin A is likely a mutational hotspot for spinocerebellar ataxia type 23 mutations, and in vitro data suggested that dynorphin A mutations lead to persistently elevated mutant peptide levels that are cytotoxic and may thus play a crucial role in the pathogenesis of spinocerebellar ataxia type 23. To further test this and study spinocerebellar ataxia type 23 in more detail, we generated a mouse carrying the spinocerebellar ataxia type 23 mutation R212W in PDYN. Analysis of peptide levels using a radioimmunoassay shows that these PDYN(R212W) mice display markedly elevated levels of mutant dynorphin A, which are associated with climber fibre retraction and Purkinje cell loss, visualized with immunohistochemical stainings. The PDYN(R212W) mice reproduced many of the clinical features of spinocerebellar ataxia type 23, with gait deficits starting at 3 months of age revealed by footprint pattern analysis, and progressive loss of motor coordination and balance at the age of 12 months demonstrated by declining performances on the accelerating Rotarod. The pathologically elevated mutant dynorphin A levels in the cerebellum coincided with transcriptionally dysregulated ionotropic and metabotropic glutamate receptors and glutamate transporters, and altered neuronal excitability. In conclusion, the PDYN(R212W) mouse is the first animal model of spinocerebellar ataxia type 23 and our work indicates that the elevated mutant dynorphin A peptide levels are likely responsible for the initiation and progression of the disease, affecting glutamatergic signalling, neuronal excitability, and motor performance. Our novel mouse model defines a critical role for opioid neuropeptides in spinocerebellar ataxia, and suggests that restoring the elevated mutant neuropeptide levels can be explored as a therapeutic intervention.


Subject(s)
Cerebellum/pathology , Dynorphins/genetics , Gene Expression Regulation/genetics , Movement Disorders/etiology , Mutation/genetics , Purkinje Cells/physiology , Spinocerebellar Degenerations , Action Potentials/physiology , Age Factors , Animals , Animals, Newborn , Cell Count , Cells, Cultured , Disease Models, Animal , Dynorphins/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , Patch-Clamp Techniques , Signal Transduction/genetics , Spinocerebellar Degenerations/complications , Spinocerebellar Degenerations/genetics , Spinocerebellar Degenerations/pathology , Synapses/genetics , Synapses/pathology
8.
Cell Mol Life Sci ; 72(17): 3387-99, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25854634

ABSTRACT

The dominantly inherited cerebellar ataxias are a heterogeneous group of neurodegenerative disorders caused by Purkinje cell loss in the cerebellum. Recently, we identified loss-of-function mutations in the KCND3 gene as the cause of spinocerebellar ataxia type 19/22 (SCA19/22), revealing a previously unknown role for the voltage-gated potassium channel, Kv4.3, in Purkinje cell survival. However, how mutant Kv4.3 affects wild-type Kv4.3 channel functioning remains unknown. We provide evidence that SCA19/22-mutant Kv4.3 exerts a dominant negative effect on the trafficking and surface expression of wild-type Kv4.3 in the absence of its regulatory subunit, KChIP2. Notably, this dominant negative effect can be rescued by the presence of KChIP2. We also found that all SCA19/22-mutant subunits either suppress wild-type Kv4.3 current amplitude or alter channel gating in a dominant manner. Our findings suggest that altered Kv4.3 channel localization and/or functioning resulting from SCA19/22 mutations may lead to Purkinje cell loss, neurodegeneration and ataxia.


Subject(s)
Mutation/genetics , Purkinje Cells/metabolism , Shal Potassium Channels/metabolism , Spinocerebellar Degenerations/genetics , Analysis of Variance , Cycloheximide , DNA Primers/genetics , HeLa Cells , Humans , Image Processing, Computer-Assisted , Immunohistochemistry , Mutagenesis, Site-Directed , Shal Potassium Channels/genetics
9.
PLoS Genet ; 11(3): e1005021, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25748626

ABSTRACT

Skeletal muscle remodelling and contractile dysfunction occur through both acute and chronic disease processes. These include the accumulation of insoluble aggregates of misfolded amyloid proteins that is a pathological feature of Huntington's disease (HD). While HD has been described primarily as a neurological disease, HD patients' exhibit pronounced skeletal muscle atrophy. Given that huntingtin is a ubiquitously expressed protein, skeletal muscle fibres may be at risk of a cell autonomous HD-related dysfunction. However the mechanism leading to skeletal muscle abnormalities in the clinical and pre-clinical HD settings remains unknown. To unravel this mechanism, we employed the R6/2 transgenic and HdhQ150 knock-in mouse models of HD. We found that symptomatic animals developed a progressive impairment of the contractile characteristics of the hind limb muscles tibialis anterior (TA) and extensor digitorum longus (EDL), accompanied by a significant loss of motor units in the EDL. In symptomatic animals, these pronounced functional changes were accompanied by an aberrant deregulation of contractile protein transcripts and their up-stream transcriptional regulators. In addition, HD mouse models develop a significant reduction in muscle force, possibly as a result of a deterioration in energy metabolism and decreased oxidation that is accompanied by the re-expression of the HDAC4-DACH2-myogenin axis. These results show that muscle dysfunction is a key pathological feature of HD.


Subject(s)
Huntington Disease/pathology , Muscle, Skeletal/pathology , Animals , Atrophy , Gene Knock-In Techniques , Histone Deacetylases/metabolism , Humans , Huntington Disease/genetics , Huntington Disease/metabolism , Mice , Mice, Transgenic , Muscle, Skeletal/metabolism , Myogenin/metabolism , Serotonin Plasma Membrane Transport Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...