Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Brain Res Bull ; 75(2-4): 256-60, 2008 Mar 18.
Article in English | MEDLINE | ID: mdl-18331881

ABSTRACT

A previous study in the lizard Gekko gecko has revealed that neuropeptide FF (NPFF, a neuropeptide involved in nociception, cardiovascular regulation, and endocrine function) is widely distributed throughout the brain and spinal cord. Although the distribution of NPFF immunoreactivity shares many features with that found in other vertebrates, it was noted that Gekko shared more features with anamniotes in terms of number of cell groups, more elaborate networks of fibers, and lack of colocalization with catecholamines, than with mammals. To assess the primitive or derived character of these features, NPFF and tyrosine hydroxylase (TH) antibodies have been applied to the brain and spinal cord of the turtle, Pseudemys scripta elegans, which belongs to a different radiation of reptiles. As in Gekko, major NPFF-ir cell groups were found in the diagonal band nucleus of Broca and in the hypothalamus, whereas additional cells were identified in the anterior olfactory nucleus, lateral and dorsal cortices, dorsal ventricular ridge, and the intergeniculate leaflet formation. Notable differences are the presence of NPFF-ir cells in the medial cortex and striatum of Pseudemys, which are lacking in Gekko. On the other hand, no NPFF-ir cells could be detected in the septal region and dorsal horn of the spinal cord in Pseudemys. Double staining with NPFF and TH antibodies revealed an intimate relationship between NPFF-ir and TH-ir structures but colocalization could not be established. In conclusion, the distribution of NPFF in the brain of Pseudemys has corroborated previous results in Gekko, but also revealed some notable species differences.


Subject(s)
Brain/metabolism , Catecholamines/metabolism , Oligopeptides/metabolism , Turtles/anatomy & histology , Animals , Turtles/metabolism , Tyrosine 3-Monooxygenase/metabolism
2.
Brain Res Bull ; 57(3-4): 325-30, 2002.
Article in English | MEDLINE | ID: mdl-11922982

ABSTRACT

The origin and development of the supraspinal catecholaminergic (CA) innervation of the spinal cord was studied in representative species of the three amphibian orders (Anura: Xenopus laevis and Rana perezi; Urodela: Pleurodeles waltl; Gymnophiona: Dermophis mexicanus). Using retrograde dextran amine tracing in combination with tyrosine hydroxylase (TH)-immunohistochemistry, we showed that only four brain centers contribute to the CA innervation of the adult spinal cord: (1) the ventrolateral component of the posterior tubercle, (2) the periventricular nucleus of the zona incerta, (3) the locus coeruleus, and (4) the nucleus of the solitary tract (except for gymnophionans). The pattern observed is largely similar in all amphibian species studied. The development of the CA innervation of the spinal cord was studied with in vitro double labeling methods in Xenopus laevis tadpoles. At stage 40/41, the first CA neurons projecting to the spinal cord were found to originate in the posterior tubercle. At stage 43, spinal projections were found from the periventricular nucleus of the zona incerta and the locus coeruleus, whereas spinal projections from the nucleus of the solitary tract were not observed before stage 53. These results demonstrate a temporal sequence in the appearance of the CA cell groups projecting to the anuran spinal cord, organized along a rostrocaudal gradient.


Subject(s)
Amphibians/physiology , Catecholamines/metabolism , Spinal Cord/physiology , Amphibians/embryology , Animals , Efferent Pathways/physiology , Embryo, Nonmammalian/physiology , Immunohistochemistry , Locus Coeruleus/physiology , Ranidae , Solitary Nucleus/physiology , Spinal Cord/embryology , Subthalamus/physiology , Synaptic Transmission , Tyrosine 3-Monooxygenase/metabolism , Urodela , Xenopus laevis
SELECTION OF CITATIONS
SEARCH DETAIL
...