Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 9(11): e21716, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38027549

ABSTRACT

This study set out to assess the microbiological quality of shellfish collected over a six-year period of time in the Campania Region Sea. A total of 1459 samples were examined in order to determine whether Escherichia coli was present. To investigate potential correlations between the E. coli counts and environmental parameters (salinity, pH, dissolved oxygen, seawater temperature, turbidity, rainfall) and pollution variables (density and distance of heavy and light discharges), data were gathered. With only roughly 19% of the samples not meeting European and Italian criteria (E. coli counts more than 230 most likely number MPN per 100 g of pulp and intravalvar liquid), the results showed that the microbiological quality of the shellfish was good. A correlation between microbial contamination, season, rainfall, and dissolved oxygen was found using statistical analysis. However, the discharge density along the coast per spatial unit (a 200 × 200 MT cell), which was determined using the "quartic" Kernel function, showed found to be the primary factor determining the E. coli concentration in the shellfish. An increase in rain millimeters was found to be associated with a higher risk of heightened E. coli contamination, according to a model that was fitted to assess the probability of detecting a higher E. coli count in connection to environmental parameters. This outcome could be explained by the discharge density near the coast as well as the increased availability of coliforms, particularly E. coli, and nutrients during periods of heavier rainfall.

2.
Biology (Basel) ; 12(7)2023 Jul 13.
Article in English | MEDLINE | ID: mdl-37508426

ABSTRACT

The isolation of islands has played a significant role in shaping the unique evolutionary histories of many species of flora and fauna, including bats. One notable example is the Madeira pipistrelle (Pipistrellus maderensis), which inhabits the Macaronesian archipelagos of the Azores, Madeira, and the Canary Islands. Despite the high biogeographic and conservation importance of this species, there is limited information on its ecology and evolutionary history across different archipelagos. In our study, we employed species distribution models (SDMs) to identify suitable habitats for the Madeira pipistrelle and determine the environmental factors influencing its distribution. Additionally, we conducted molecular comparisons using mitochondrial DNA data from various Macaronesian islands. Molecular analyses provided compelling evidence for the presence of distinct Evolutionary Significant Units on the different archipelagos. We identified distinct haplotypes in the populations of Madeira and the Canary Islands, with a genetic distance ranging from a minimum of 2.4% to a maximum of 3.3% between samples from different archipelagos. In support of this, SDMs highlighted relevant dissimilarities between the environmental requirements of the populations of the three archipelagos, particularly the climatic niche. Our research demonstrates that deeper investigations that combine ecological, morphological, and genetic areas are necessary to implement tailored conservation strategies.

3.
Sci Total Environ ; 877: 162893, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-36933734

ABSTRACT

Fagus sylvatica is one of the most representative trees of the European deciduous broadleaved forests, yet the impact of changing climatic conditions and anthropogenic pressures (anthromes) on its presence and distribution in the coastal and lowland areas of the Mediterranean Basin has long been overlooked. Here, we first analysed the local forest composition in two different time intervals (350-300 Before Current Era, BCE and 150-100 BCE) using charred wood remains from the Etruscan site of Cetamura (Tuscany, central Italy). Additionally, we reviewed all the relevant publications and the wood/charcoal data obtained from anthracological analysis in F. sylvatica, focusing on samples that date back to 4000 years before present, to better understand the drivers of beech presence and distribution during the Late Holocene (LH) in the Italian Peninsula. Then, we combined charcoal and spatial analyses to test the distribution of beech woodland at low elevation during LH in Italy and to evaluate the effect of climate change and/or anthrome on the disappearance of F. sylvatica from the lowlands. We collected 1383 charcoal fragments in Cetamura belonging to 21 woody taxa, with F. sylvatica being the most abundant species (28 %), followed by other broadleaved trees. We identified 25 sites in the Italian Peninsula with beech charcoals in the last 4000 years. Our spatial analyses showed a marked decrease in habitat suitability of F. sylvatica from LH to the present (ca. 48 %), particularly in the lowlands (0-300 m above sea level, a.s.l.) and in areas included between 300-600 m a.s.l. with a subsequent shift upwards of the beech woodland of ca. 200 m from the past to the present. In the lowland areas, where F. sylvatica has disappeared, anthrome alone and climate + anthorme had a main effect on beech distribution whitin 0-50 m a.s.l., while the climate from 50 to 300 m a.s.l. Furthermore, climate affect also the beech distrinution in the areas >300 m a.s.l., while climate + anthrome and antrhome alone were mainly focused on the lowland areas. Our results highlight the advantage of combining different approaches, such as charcoal analysis and spatial analyses, to explore biogeographic questions about the past and current distribution of F. sylvatica, with important implications for today's forest management and conservation policies.


Subject(s)
Fagus , Anthropogenic Effects , Charcoal , Forests , Trees , Climate Change , Spatial Analysis
4.
Glob Chang Biol ; 28(21): 6268-6279, 2022 11.
Article in English | MEDLINE | ID: mdl-36052733

ABSTRACT

With over a thousand of introduced species, the Mediterranean is the most heavily invaded marine region in the world. Yet, the spatio-temporal dynamics of this bioinvasion has never been analysed. Examination of a comprehensive dataset of 4015 georeferenced observations, extracted from the scientific literature, allowed (i) reconstructing the invasion and the introduction and post-introduction dynamics of exotic fish species, (ii) calculating introduction and spread rates, and (iii) investigating the time correlates since introduction. Our analysis encompasses 188 fish species that entered the Mediterranean from 1896 to 2020, including 25 Atlantic species that naturally expanded their range through the Strait of Gibraltar. Cumulative occurrences, reported in 264 distribution maps, documented the progressive expansion of the most represented species and the spatio-temporal patterns associated with three introduction routes: the Suez Canal (CAN); other human-mediated vectors (HM) and the Strait of Gibraltar (NRE). The arrival rate of the species introduced through all three routes increased steeply after 1990, without a sign of saturation. Data analysis highlighted some temporal and geographical patterns, such as the effect and eventual weakening of the biogeographical barriers represented by the Strait of Sicily and the North Aegean Sea and the asymmetrical distribution of occurrences along the northern and southern Mediterranean coasts. Finally, there was an exponential increase in the secondary spread rates of CAN and NRE immigrants, as the more recent introductions achieved the fastest geographical expansions. Our findings provide a detailed and spatially explicit summary of a massive invasion that has changed the history of the Mediterranean biota and represent a remarkable example of rapid biotic homogenization in the global ocean.


Subject(s)
Fishes , Introduced Species , Animals , Geography , Humans , Mediterranean Sea
5.
Sci Data ; 9(1): 363, 2022 06 25.
Article in English | MEDLINE | ID: mdl-35752639

ABSTRACT

The Mediterranean Sea is recognized today as the World's most invaded marine region, but observations of species occurrences remain scattered in the scientific literature and scarcely accessible. Here we introduce the ORMEF database: a first comprehensive and robust compilation of exotic fish observations recorded over more than a century in the Mediterranean. ORMEF consists today of 4015 geo-referenced occurrences from 20 Mediterranean Countries, extracted from 670 scientific published papers. We collated information on 188 fish taxa that are thus divided: 106 species entered through the Suez Canal; 25 species introduced by shipping, mariculture, aquarium release or by means of other human activities; 57 Atlantic species, whose arrival in the Mediterranean has been attributed to the unassisted immigration through the strait of Gibraltar. Each observation included in the ORMEF database was submitted to a severe quality control and checked for geographical and taxonomic biases. ORMEF is a new authoritative reference for Mediterranean bio-invasion research and a living archive to inform management strategies and policymakers in a period of rapid environmental transformation.


Subject(s)
Fishes , Animals , Databases, Factual , Mediterranean Sea
6.
Biology (Basel) ; 10(8)2021 Jul 21.
Article in English | MEDLINE | ID: mdl-34439926

ABSTRACT

Bats show responses to anthropogenic stressors linked to changes in other ecosystem components such as insects, and as K-selected mammals, exhibit fast population declines. This speciose, widespread mammal group shows an impressive trophic diversity and provides key ecosystem services. For these and other reasons, bats might act as suitable bioindicators in many environmental contexts. However, few studies have explicitly tested this potential, and in some cases, stating that bats are useful bioindicators more closely resembles a slogan to support conservation than a well-grounded piece of scientific evidence. Here, we review the available information and highlight the limitations that arise in using bats as bioindicators. Based on the limited number of studies available, the use of bats as bioindicators is highly promising and warrants further investigation in specific contexts such as river quality, urbanisation, farming practices, forestry, bioaccumulation, and climate change. Whether bats may also serve as surrogate taxa remains a controversial yet highly interesting matter. Some limitations to using bats as bioindicators include taxonomical issues, sampling problems, difficulties in associating responses with specific stressors, and geographically biased or delayed responses. Overall, we urge the scientific community to test bat responses to specific stressors in selected ecosystem types and develop research networks to explore the geographic consistency of such responses. The high cost of sampling equipment (ultrasound detectors) is being greatly reduced by technological advances, and the legal obligation to monitor bat populations already existing in many countries such as those in the EU offers an important opportunity to accomplish two objectives (conservation and bioindication) with one action.

7.
Environ Pollut ; 284: 117187, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-33906034

ABSTRACT

Artificial light at night (ALAN) is a pervasive form of pollution largely affecting wildlife, from individual behaviour to community structure and dynamics. As nocturnal mammals, bats are often adversely affected by ALAN, yet some "light-opportunistic" species exploit it by hunting insects swarming near lights. Here we used two potentially competing pipistrelle species as models, Kuhl's (Pipistrellus kuhlii) and common (Pipistrellus pipistrellus) pipistrelles, both known to forage in artificially illuminated areas. We set our study in a mountainous area of central Italy, where only recently did the two species become syntopic. We applied spatial modelling and radiotracking to contrast potential vs. actual environmental preferences by the two pipistrelles. Species distribution models and niche analysis showed a large interspecific niche overlap, including a preference for illuminated areas, presenting a potential competition scenario. Pipistrellus pipistrellus association with ALAN, however, was weakened by adding P. kuhlii as a biotic variable to the model. Radiotracking showed that the two species segregated habitats at a small spatial scale and that P. kuhlii used artificially illuminated sites much more frequently than P. pipistrellus, despite both species potentially being streetlamp foragers. We demonstrate that ALAN influences niche segregation between two potentially competing species, confirming its pervasive effects on species and community dynamics, and provide an example of how light pollution and species' habitat preferences may weave a tapestry of complex ecological interactions.


Subject(s)
Chiroptera , Animals , Ecosystem , Italy , Lighting , Mammals
8.
Ecol Evol ; 10(12): 5785-5800, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32607190

ABSTRACT

Because of the high risk of going unnoticed, cryptic species represent a major challenge to biodiversity assessments, and this is particularly true for taxa that include many such species, for example, bats. Long-eared bats from the genus Plecotus comprise numerous cryptic species occurring in the Mediterranean Region and present complex phylogenetic relationships and often unclear distributions, particularly at the edge of their known ranges and on islands. Here, we combine Species Distribution Models (SDMs), field surveys and molecular analyses to shed light on the presence of a cryptic long-eared bat species from North Africa, Plecotus gaisleri, on the islands of the Sicily Channel, providing strong evidence that this species also occurs in Europe, at least on the islands of the Western Mediterranean Sea that act as a crossroad between the Old Continent and Africa. Species Distribution Models built using African records of P. gaisleri and projected to the Sicily Channel Islands showed that all these islands are potentially suitable for the species. Molecular identification of Plecotus captured on Pantelleria, and recent data from Malta and Gozo, confirmed the species' presence on two of the islands in question. Besides confirming that P. gaisleri occurs on Pantelleria, haplotype network reconstructions highlighted moderate structuring between insular and continental populations of this species. Our results remark the role of Italy as a bat diversity hotspot in the Mediterranean and also highlight the need to include P. gaisleri in European faunal checklists and conservation directives, confirming the usefulness of combining different approaches to explore the presence of cryptic species outside their known ranges-a fundamental step to informing conservation.

SELECTION OF CITATIONS
SEARCH DETAIL
...