Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
New Phytol ; 242(2): 744-759, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38264772

ABSTRACT

Angiosperms, which inhabit diverse environments across all continents, exhibit significant variation in genome sizes, making them an excellent model system for examining hypotheses about the global distribution of genome size. These include the previously proposed large genome constraint, mutational hazard, polyploidy-mediated, and climate-mediated hypotheses. We compiled the largest genome size dataset to date, encompassing 16 017 (> 5% of known) angiosperm species, and analyzed genome size distribution using a comprehensive geographic distribution dataset for all angiosperms. We observed that angiosperms with large range sizes generally had small genomes, supporting the large genome constraint hypothesis. Climate was shown to exert a strong influence on genome size distribution along the global latitudinal gradient, while the frequency of polyploidy and the type of growth form had negligible effects. In contrast to the unimodal patterns along the global latitudinal gradient shown by plant size traits and polyploid proportions, the increase in angiosperm genome size from the equator to 40-50°N/S is probably mediated by different (mostly climatic) mechanisms than the decrease in genome sizes observed from 40 to 50°N northward. Our analysis suggests that the global distribution of genome sizes in angiosperms is mainly shaped by climatically mediated purifying selection, genetic drift, relaxed selection, and environmental filtering.


Subject(s)
Magnoliopsida , Magnoliopsida/genetics , Genome Size , Genome, Plant , Polyploidy , Plants/genetics , Phylogeny
2.
Front Plant Sci ; 12: 642661, 2021.
Article in English | MEDLINE | ID: mdl-33679859

ABSTRACT

Centromere drive model describes an evolutionary process initiated by centromeric repeats expansion, which leads to the recruitment of excess kinetochore proteins and consequent preferential segregation of an expanded centromere to the egg during female asymmetric meiosis. In response to these selfish centromeres, the histone protein CenH3, which recruits kinetochore components, adaptively evolves to restore chromosomal parity and counter the detrimental effects of centromere drive. Holocentric chromosomes, whose kinetochores are assembled along entire chromosomes, have been hypothesized to prevent expanded centromeres from acquiring a selective advantage and initiating centromere drive. In such a case, CenH3 would be subjected to less frequent or no adaptive evolution. Using codon substitution models, we analyzed 36 CenH3 sequences from 35 species of the holocentric family Cyperaceae. We found 10 positively selected codons in the CenH3 gene [six codons in the N-terminus and four in the histone fold domain (HFD)] and six branches of its phylogeny along which the positive selection occurred. One of the positively selected codons was found in the centromere targeting domain (CATD) that directly interacts with DNA and its mutations may be important in centromere drive suppression. The frequency of these positive selection events was comparable to the frequency of positive selection in monocentric clades with asymmetric female meiosis. Taken together, these results suggest that preventing centromere drive is not the primary adaptive role of holocentric chromosomes, and their ability to suppress it likely depends on their kinetochore structure in meiosis.

3.
Ann Bot ; 126(2): 323-330, 2020 07 24.
Article in English | MEDLINE | ID: mdl-32474609

ABSTRACT

BACKGROUND AND AIMS: The idea that genome (size) evolution in eukaryotes could be driven by environmental factors is still vigorously debated. In extant plants, genome size correlates positively with stomatal size, leading to the idea that conditions enabling the existence of large stomata in fossil plants also supported growth of their genome size. We test this inductive assumption in drought-adapted, prostrate-leaved Cape (South Africa) geophytes where, compared with their upright-leaved geophytic ancestors, stomata develop in a favourably humid microclimate formed underneath their leaves. METHODS: Stomatal parameters (leaf cuticle imprints) and genome size (flow cytometry) were measured in 16 closely related geophytic species pairs from seven plant families. In each pair, representing a different genus, we contrasted a prostrate-leaved species with its upright-leaved phylogenetic relative, the latter whose stomata are exposed to the ambient arid climate. KEY RESULTS: Except for one, all prostrate-leaves species had larger stomata, and in 13 of 16 pairs they also had larger genomes than their upright-leaved relatives. Stomatal density and theoretical maximum conductance were less in prostrate-leaved species with small guard cells (<1 pL) but showed no systematic difference in species pairs with larger guard cells (>1 pL). Giant stomata were observed in the prostrate-leaved Satyrium bicorne (89-137 µm long), despite its relatively small genome (2C = 9 Gbp). CONCLUSIONS: Our results imply that climate, through selection on stomatal size, might be able to drive genome size evolution in plants. The data support the idea that plants from 'greenhouse' geological periods with large stomata might have generally had larger genome sizes when compared with extant plants, though this might not have been solely due to higher atmospheric CO2 in these periods but could also have been due to humid conditions prevailing at fossil deposit sites.


Subject(s)
Genome, Plant/genetics , Plant Stomata/genetics , Genome Size , Phylogeny , Plant Leaves , South Africa
4.
Ann Bot ; 126(5): 883-889, 2020 10 06.
Article in English | MEDLINE | ID: mdl-32582956

ABSTRACT

BACKGROUND AND AIMS: Ultraviolet-B radiation (UV-B) radiation damages the DNA, cells and photosynthetic apparatus of plants. Plants commonly prevent this damage by synthetizing UV-B-protective compounds. Recent laboratory experiments in Arabidopsis and cucumber have indicated that plants can also respond to UV-B stress with endopolyploidy. Here we test the generality of this response in natural plant populations, considering their monocentric or holocentric chromosomal structure. METHODS: We measured the endopolyploidy index (flow cytometry) and the concentration of UV-B-protective compounds in leaves of 12 herbaceous species (1007 individuals) from forest interiors and neighbouring clearings where they were exposed to increased UV-B radiation (103 forest + clearing populations). We then analysed the data using phylogenetic mixed models. KEY RESULTS: The concentration of UV-B protectives increased with UV-B doses estimated from hemispheric photographs of the sky above sample collection sites, but the increase was more rapid in species with monocentric chromosomes. Endopolyploidy index increased with UV-B doses and with concentrations of UV-B-absorbing compounds only in species with monocentric chromosomes, while holocentric species responded negligibly. CONCLUSIONS: Endopolyploidy seems to be a common response to increased UV-B in monocentric plants. Low sensitivity to UV-B in holocentric species might relate to their success in high-UV-stressed habitats and corroborates the hypothesized role of holocentric chromosomes in plant terrestrialization.


Subject(s)
Arabidopsis , Chromosomes , Humans , Phylogeny , Plant Leaves , Ultraviolet Rays
5.
Ann Bot ; 119(3): 409-416, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28025291

ABSTRACT

BACKGROUND AND AIMS: Studies in the carnivorous family Lentibulariaceae in the last years resulted in the discovery of the smallest plant genomes and an unusual pattern of genomic GC content evolution. However, scarcity of genomic data in other carnivorous clades still prevents a generalization of the observed patterns. Here the aim was to fill this gap by mapping genome evolution in the second largest carnivorous family, Droseraceae, where this evolution may be affected by chromosomal holokinetism in Drosera METHODS: The genome size and genomic GC content of 71 Droseraceae species were measured by flow cytometry. A dated phylogeny was constructed, and the evolution of both genomic parameters and their relationship to species climatic niches were tested using phylogeny-based statistics. KEY RESULTS: The 2C genome size of Droseraceae varied between 488 and 10 927 Mbp, and the GC content ranged between 37·1 and 44·7 %. The genome sizes and genomic GC content of carnivorous and holocentric species did not differ from those of their non-carnivorous and monocentric relatives. The genomic GC content positively correlated with genome size and annual temperature fluctuations. The genome size and chromosome numbers were inversely correlated in the Australian clade of Drosera CONCLUSIONS: Our results indicate that neither carnivory (nutrient scarcity) nor the holokinetism have a prominent effect on size and DNA base composition of Droseraceae genomes. However, the holokinetic drive seems to affect karyotype evolution in one of the major clades of Drosera Our survey confirmed that the evolution of GC content is tightly connected with the evolution of genome size and also with environmental conditions.


Subject(s)
Biological Evolution , Droseraceae/genetics , Genome, Plant/genetics , Base Composition/genetics , Carnivory , Chromosomes, Plant/genetics , Genetic Variation/genetics , Phylogeny
7.
New Phytol ; 193(2): 513-21, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22050640

ABSTRACT

• Knowledge of the phylogenetic pattern and biological relevance of the base composition of large eukaryotic genomes (including those of plants) is poor. With the use of flow cytometry (FCM), the amount of available data on the guanine + cytosine (GC) content of plants has nearly doubled in the last decade. However, skepticism exists concerning the reliability of the method because of uncertainty in some input parameters. • Here, we tested the reliability of FCM for estimating GC content by comparison with the biochemical method of DNA temperature melting analysis (TMA). We conducted measurements in 14 plant species with a maximum currently known GC content range (33.6-47.5% as measured by FCM). We also compared the estimations of the GC content by FCM with genomic sequences in 11 Oryza species. • FCM and TMA data exhibited a high degree of correspondence which remained stable over the relatively wide range of binding lengths (3.39-4.09) assumed for the base-specific dye used. A high correlation was also observed between FCM results and the sequence data in Oryza, although the latter GC contents were consistently lower. • Reliable estimates of the genomic base composition in plants by FCM are comparable with estimates obtained using other methods, and so wider application of FCM in future plant genomic research, although it would pose a challenge, would be supported by these findings.


Subject(s)
Base Composition/genetics , Flow Cytometry/methods , Genome, Plant/genetics , Bacteria/genetics , Base Sequence , DNA, Plant/genetics , Nucleic Acid Denaturation , Reproducibility of Results , Species Specificity , Temperature
8.
BMC Plant Biol ; 10: 265, 2010 Nov 30.
Article in English | MEDLINE | ID: mdl-21118487

ABSTRACT

BACKGROUND: Transposable elements (TEs) are considered to be an important source of genome size variation and genetic and phenotypic plasticity in eukaryotes. Most of our knowledge about TEs comes from large genomic projects and studies focused on model organisms. However, TE dynamics among related taxa from natural populations and the role of TEs at the species or supra-species level, where genome size and karyotype evolution are modulated in concert with polyploidy and chromosomal rearrangements, remain poorly understood. We focused on the holokinetic genus Eleocharis (Cyperaceae), which displays large variation in genome size and the occurrence of polyploidy and agmatoploidy/symploidy. We analyzed and quantified the long terminal repeat (LTR) retrotransposons Ty1-copia and Ty3-gypsy in relation to changes in both genome size and karyotype in Eleocharis. We also examined how this relationship is reflected in the phylogeny of Eleocharis. RESULTS: Using flow cytometry, we measured the genome sizes of members of the genus Eleocharis (Cyperaceae). We found positive correlation between the independent phylogenetic contrasts of genome size and chromosome number in Eleocharis. We analyzed PCR-amplified sequences of various reverse transcriptases of the LTR retrotransposons Ty1-copia and Ty3-gypsy (762 sequences in total). Using real-time PCR and dot blot approaches, we quantified the densities of Ty1-copia and Ty3-gypsy within the genomes of the analyzed species. We detected an increasing density of Ty1-copia elements in evolutionarily younger Eleocharis species and found a positive correlation between Ty1-copia densities and C/n-values (an alternative measure of monoploid genome size) in the genus phylogeny. In addition, our analysis of Ty1-copia sequences identified a novel retrotransposon family named Helos1, which is responsible for the increasing density of Ty1-copia. The transition:transversion ratio of Helos1 sequences suggests that Helos1 recently transposed in later-diverging Eleocharis species. CONCLUSIONS: Using several different approaches, we were able to distinguish between the roles of LTR retrotransposons, polyploidy and agmatoploidy/symploidy in shaping Eleocharis genomes and karyotypes. Our results confirm the occurrence of both polyploidy and agmatoploidy/symploidy in Eleocharis. Additionally, we introduce a new player in the process of genome evolution in holokinetic plants: LTR retrotransposons.


Subject(s)
Eleocharis/genetics , Genome, Plant/genetics , Retroelements/genetics , Terminal Repeat Sequences/genetics , Amino Acid Sequence , Base Sequence , Chromosomes, Plant/genetics , DNA, Plant/chemistry , DNA, Plant/genetics , Eleocharis/classification , Evolution, Molecular , Molecular Sequence Data , Phylogeny , Polyploidy , Sequence Analysis, DNA , Sequence Homology, Amino Acid , Sequence Homology, Nucleic Acid , Species Specificity
9.
Int J Syst Evol Microbiol ; 56(Pt 10): 2341-2344, 2006 Oct.
Article in English | MEDLINE | ID: mdl-17012558

ABSTRACT

In 2001, a Gram-variable, facultatively anaerobic, endospore-forming bacterium isolated from biodeteriorated mural paintings in the Servilia tomb of the Roman necropolis of Carmona was deposited as Paenibacillus strain LMG 19508. Subsequently, the strain was characterized in detail using phenotypic and molecular methods. The 16S rRNA gene sequence confirmed that the strain belongs to the genus Paenibacillus and indicated its relationship to Paenibacillus mendelii CCM 4839(T) (96.7 % sequence similarity). The predominant menaquinone was MK-7. The cell wall contained meso-diaminopimelic acid of the A1gamma type. The DNA G+C content (50 mol%) and the major fatty acid (anteiso-C(15 : 0)) of strain LMG 19508(T) were also consistent with its affiliation to the genus Paenibacillus. DNA-DNA hybridization distinguished strain LMG 19508(T) from other phylogenetically related Paenibacillus species. Therefore, the isolate represents a novel species, for which the name Paenibacillus sepulcri sp. nov. is proposed. The type strain is CCM 7311(T) (=LMG 19508(T)).


Subject(s)
Bacteria, Anaerobic/classification , Bacteria, Anaerobic/isolation & purification , Paintings , Bacteria, Anaerobic/genetics , Bacteria, Anaerobic/physiology , Bacterial Typing Techniques , Burial , DNA, Bacterial/analysis , Endospore-Forming Bacteria/classification , Endospore-Forming Bacteria/genetics , Endospore-Forming Bacteria/isolation & purification , Endospore-Forming Bacteria/physiology , Fatty Acids/analysis , Genes, rRNA , Genotype , Molecular Sequence Data , Phenotype , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Spain , Spores, Bacterial/physiology
10.
Int J Syst Evol Microbiol ; 55(Pt 6): 2351-2354, 2005 Nov.
Article in English | MEDLINE | ID: mdl-16280495

ABSTRACT

A Gram-variable, facultatively anaerobic, endospore-forming bacterium was isolated from surface-sterilized seeds of the garden pea and characterized with phenotypic and molecular methods. A PCR with the Paenibacillus-specific primer PAEN515F and the 16S rRNA gene sequence indicated that strain C/2T belongs to the genus Paenibacillus and is closely related to Paenibacillus phyllosphaerae (94.0 % sequence similarity). Strain C/2T generated a unique phenotypic profile, in particular for the production of acid from substrates. The DNA G+C content (50.8 mol%) and the major fatty acid (anteiso-C(15 : 0)) are consistent with the genus Paenibacillus. DNA-DNA hybridization distinguished strain C/2T from other phylogenetically related Paenibacillus species and, therefore, strain C/2T (=CCM 4839T=LMG 23002T) is here described as the type strain of a novel species, for which the name Paenibacillus mendelii sp. nov. is proposed.


Subject(s)
Gram-Positive Bacteria/classification , Pisum sativum/microbiology , RNA, Ribosomal, 16S/analysis , Seeds/microbiology , Base Composition , DNA, Bacterial/analysis , DNA, Bacterial/chemistry , DNA, Bacterial/isolation & purification , DNA, Ribosomal/chemistry , DNA, Ribosomal/isolation & purification , Fatty Acids/analysis , Fatty Acids/isolation & purification , Genes, rRNA , Gram-Positive Bacteria/isolation & purification , Gram-Positive Bacteria/physiology , Molecular Sequence Data , Nucleic Acid Hybridization , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...