Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 259(Pt 2): 129330, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38218270

ABSTRACT

DEAD-box helicases are global regulators of liquid-liquid phase separation (LLPS), a process that assembles membraneless organelles inside cells. An outstanding member of the DEAD-box family is DDX3X, a multi-functional protein that plays critical roles in RNA metabolism, including RNA transcription, splicing, nucleocytoplasmic export, and translation. The diverse functions of DDX3X result from its ability to bind and remodel RNA in an ATP-dependent manner. This capacity enables the protein to act as an RNA chaperone and an RNA helicase, regulating ribonucleoprotein complex assembly. DDX3X and its orthologs from mouse, yeast (Ded1), and C. elegans (LAF-1) can undergo LLPS, driving the formation of neuronal granules, stress granules, processing bodies or P-granules. DDX3X has been related to several human conditions, including neurodevelopmental disorders, such as intellectual disability and autism spectrum disorder. Although the research into the pathogenesis of aberrant biomolecular condensation in neurodegenerative diseases is increasing rapidly, the role of LLPS in neurodevelopmental disorders is underexplored. This review summarizes current findings relevant for DDX3X phase separation in neurodevelopment and examines how disturbances in the LLPS process can be related to neurodevelopmental disorders.


Subject(s)
Autism Spectrum Disorder , DEAD-box RNA Helicases , Neurodevelopmental Disorders , Animals , Humans , Mice , Autism Spectrum Disorder/genetics , Caenorhabditis elegans/metabolism , DEAD-box RNA Helicases/genetics , DEAD-box RNA Helicases/metabolism , Neurodevelopmental Disorders/genetics , RNA/metabolism , Saccharomyces cerevisiae/metabolism
2.
Biochim Biophys Acta Gene Regul Mech ; 1861(4): 344-353, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29222070

ABSTRACT

The field of tRNA biology, encompassing the functional and structural complexity of tRNAs, has fascinated scientists over the years and is continuously growing. Besides their fundamental role in protein translation, new evidence indicates that tRNA-derived molecules also regulate gene expression and protein synthesis in all domains of life. This review highlights some of the recent findings linking tRNA transcription and modification with plant cell growth and response to pathogens. In fact, mutations in proteins directly involved in tRNA synthesis and modification most often lead to pleiotropic effects on plant growth and immunity. As plants need to optimize and balance their energy and nutrient resources towards growth and defense, regulatory pathways that play a central role in integrating tRNA transcription and protein translation with cell growth control and organ development, such as the auxin-TOR signaling pathway, also influence the plant immune response against pathogens. As a consequence, distinct pathogens employ an array of effector molecules including tRNA fragments to target such regulatory pathways to exploit the plant's translational capacity, gain access to nutrients and evade defenses. An example includes the RNA polymerase III repressor MAF1, a conserved component of the TOR signaling pathway that controls ribosome biogenesis and tRNA synthesis required for plant growth and which is targeted by a pathogen effector molecule to promote disease. This article is part of a Special Issue entitled: SI: Regulation of tRNA synthesis and modification in physiological conditions and disease edited by Dr. Boguta Magdalena.


Subject(s)
Gene Expression Regulation, Plant , Plants/genetics , RNA, Plant/biosynthesis , RNA, Transfer/biosynthesis , Transcription, Genetic , Amino Acid Sequence , Host-Pathogen Interactions , Indoleacetic Acids , Models, Molecular , Mutation , Plant Development/genetics , Plant Diseases/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Plants/immunology , Protein Conformation , RNA Polymerase III/genetics , RNA Polymerase III/metabolism , RNA, Plant/genetics , RNA, Transfer/genetics , Sequence Alignment , Sequence Homology, Amino Acid , TOR Serine-Threonine Kinases/physiology
3.
Structure ; 25(9): 1360-1370.e4, 2017 09 05.
Article in English | MEDLINE | ID: mdl-28781084

ABSTRACT

MAF1 is the main RNA polymerase (Pol) III repressor that controls cell growth in eukaryotes. The Citrus ortholog, CsMAF1, was shown to restrict cell growth in citrus canker disease but its role in plant development and disease is still unclear. We solved the crystal structure of the globular core of CsMAF1, which reveals additional structural elements compared with the previously available structure of hMAF1, and explored the dynamics of its flexible regions not present in the structure. CsMAF1 accumulated in the nucleolus upon leaf excision, and this translocation was inhibited by auxin and by mutation of the PKA phosphorylation site, S45, to aspartate. Additionally, mTOR phosphorylated recombinant CsMAF1 and the mTOR inhibitor AZD8055 blocked canker formation in normal but not CsMAF1-silenced plants. These results indicate that the role of TOR on cell growth induced by Xanthomonas citri depends on CsMAF1 and that auxin controls CsMAF1 interaction with Pol III in citrus.


Subject(s)
Citrus/growth & development , Indoleacetic Acids/metabolism , Repressor Proteins/chemistry , Repressor Proteins/metabolism , Binding Sites , Cell Nucleolus/metabolism , Citrus/enzymology , Citrus/microbiology , Crystallography, X-Ray , Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , Models, Molecular , Morpholines/pharmacology , Phosphorylation , Plant Diseases/microbiology , Plant Diseases/prevention & control , Plant Proteins/chemistry , Plant Proteins/metabolism , Protein Binding , Protein Conformation , TOR Serine-Threonine Kinases/metabolism
4.
PLoS Negl Trop Dis ; 11(2): e0005363, 2017 02.
Article in English | MEDLINE | ID: mdl-28231241

ABSTRACT

The teratogenic mechanisms triggered by ZIKV are still obscure due to the lack of a suitable animal model. Here we present a mouse model of developmental disruption induced by ZIKV hematogenic infection. The model utilizes immunocompetent animals from wild-type FVB/NJ and C57BL/6J strains, providing a better analogy to the human condition than approaches involving immunodeficient, genetically modified animals, or direct ZIKV injection into the brain. When injected via the jugular vein into the blood of pregnant females harboring conceptuses from early gastrulation to organogenesis stages, akin to the human second and fifth week of pregnancy, ZIKV infects maternal tissues, placentas and embryos/fetuses. Early exposure to ZIKV at developmental day 5 (second week in humans) produced complex manifestations of anterior and posterior dysraphia and hydrocephalus, as well as severe malformations and delayed development in 10.5 days post-coitum (dpc) embryos. Exposure to the virus at 7.5-9.5 dpc induces intra-amniotic hemorrhage, widespread edema, and vascular rarefaction, often prominent in the cephalic region. At these stages, most affected embryos/fetuses displayed gross malformations and/or intrauterine growth restriction (IUGR), rather than isolated microcephaly. Disrupted conceptuses failed to achieve normal developmental landmarks and died in utero. Importantly, this is the only model so far to display dysraphia and hydrocephalus, the harbinger of microcephaly in humans, as well as arthrogryposis, a set of abnormal joint postures observed in the human setting. Late exposure to ZIKV at 12.5 dpc failed to produce noticeable malformations. We have thus characterized a developmental window of opportunity for ZIKV-induced teratogenesis encompassing early gastrulation, neurulation and early organogenesis stages. This should not, however, be interpreted as evidence for any safe developmental windows for ZIKV exposure. Late developmental abnormalities correlated with damage to the placenta, particularly to the labyrinthine layer, suggesting that circulatory changes are integral to the altered phenotypes.


Subject(s)
Arthrogryposis/virology , Disease Models, Animal , Hydrocephalus/virology , Pregnancy Complications, Infectious/virology , Zika Virus Infection/virology , Zika Virus/physiology , Animals , Arthrogryposis/embryology , Arthrogryposis/immunology , Arthrogryposis/pathology , Female , Humans , Hydrocephalus/embryology , Hydrocephalus/immunology , Hydrocephalus/pathology , Male , Mice , Mice, Inbred C57BL , Placenta/abnormalities , Placenta/immunology , Placenta/virology , Pregnancy , Pregnancy Complications, Infectious/immunology , Pregnancy Complications, Infectious/pathology , Teratogens/analysis , Zika Virus Infection/embryology , Zika Virus Infection/immunology , Zika Virus Infection/pathology
5.
Proteome Sci ; 13: 11, 2015.
Article in English | MEDLINE | ID: mdl-25798074

ABSTRACT

BACKGROUND: Neks are serine-threonine kinases that are similar to NIMA, a protein found in Aspergillus nidulans which is essential for cell division. In humans there are eleven Neks which are involved in different biological functions besides the cell cycle control. Nek4 is one of the largest members of the Nek family and has been related to the primary cilia formation and in DNA damage response. However, its substrates and interaction partners are still unknown. In an attempt to better understand the role of Nek4, we performed an interactomics study to find new biological processes in which Nek4 is involved. We also described a novel Nek4 isoform which lacks a region of 46 amino acids derived from an insertion of an Alu sequence and showed the interactomics profile of these two Nek4 proteins. RESULTS AND DISCUSSION: Isoform 1 and isoform 2 of Nek4 were expressed in human cells and after an immunoprecipitation followed by mass spectrometry, 474 interacting proteins were identified for isoform 1 and 149 for isoform 2 of Nek4. About 68% of isoform 2 potential interactors (102 proteins) are common between the two Nek4 isoforms. Our results reinforce Nek4 involvement in the DNA damage response, cilia maintenance and microtubule stabilization, and raise the possibility of new functional contexts, including apoptosis signaling, stress response, translation, protein quality control and, most intriguingly, RNA splicing. We show for the first time an unexpected difference between both Nek4 isoforms in RNA splicing control. Among the interacting partners, we found important proteins such as ANT3, Whirlin, PCNA, 14-3-3ε, SRSF1, SRSF2, SRPK1 and hNRNPs proteins. CONCLUSIONS: This study provides new insights into Nek4 functions, identifying new interaction partners and further suggests an interesting difference between isoform 1 and isoform 2 of this kinase. Nek4 isoform 1 may have similar roles compared to other Neks and these roles are not all preserved in isoform 2. Besides, in some processes, both isoforms showed opposite effects, indicating a possible fine controlled regulation.

6.
Cell Cycle ; 14(4): 656-67, 2015.
Article in English | MEDLINE | ID: mdl-25664600

ABSTRACT

The mitotic spindle apparatus is composed of microtubule (MT) networks attached to kinetochores organized from 2 centrosomes (a.k.a. spindle poles). In addition to this central spindle apparatus, astral MTs assemble at the mitotic spindle pole and attach to the cell cortex to ensure appropriate spindle orientation. We propose that cell cycle-related kinase, Nek7, and its novel interacting protein RGS2, are involved in mitosis regulation and spindle formation. We found that RGS2 localizes to the mitotic spindle in a Nek7-dependent manner, and along with Nek7 contributes to spindle morphology and mitotic spindle pole integrity. RGS2-depletion leads to a mitotic-delay and severe defects in the chromosomes alignment and congression. Importantly, RGS2 or Nek7 depletion or even overexpression of wild-type or kinase-dead Nek7, reduced γ-tubulin from the mitotic spindle poles. In addition to causing a mitotic delay, RGS2 depletion induced mitotic spindle misorientation coinciding with astral MT-reduction. We propose that these phenotypes directly contribute to a failure in mitotic spindle alignment to the substratum. In conclusion, we suggest a molecular mechanism whereupon Nek7 and RGS2 may act cooperatively to ensure proper mitotic spindle organization.


Subject(s)
Mitosis/physiology , Protein Serine-Threonine Kinases/metabolism , RGS Proteins/metabolism , Spindle Apparatus/physiology , Cloning, Molecular , Humans , Image Processing, Computer-Assisted , Microscopy, Fluorescence , NIMA-Related Kinases , Phosphorylation , Plasmids/genetics , Protein Serine-Threonine Kinases/genetics , Spindle Apparatus/metabolism , Time-Lapse Imaging , Tubulin/metabolism , Two-Hybrid System Techniques
7.
J Proteome Res ; 13(9): 4074-90, 2014 Sep 05.
Article in English | MEDLINE | ID: mdl-25093993

ABSTRACT

Human NEK7 is a regulator of cell division and plays an important role in growth and survival of mammalian cells. Human NEK6 and NEK7 are closely related, consisting of a conserved C-terminal catalytic domain and a nonconserved and disordered N-terminal regulatory domain, crucial to mediate the interactions with their respective proteins. Here, in order to better understand NEK7 cellular functions, we characterize the NEK7 interactome by two screening approaches: one using a yeast two-hybrid system and the other based on immunoprecipitation followed by mass spectrometry analysis. These approaches led to the identification of 61 NEK7 interactors that contribute to a variety of biological processes, including cell division. Combining additional interaction and phosphorylation assays from yeast two-hybrid screens, we validated CC2D1A, TUBB2B, MNAT1, and NEK9 proteins as potential NEK7 interactors and substrates. Notably, endogenous RGS2, TUBB, MNAT1, NEK9, and PLEKHA8 localized with NEK7 at key sites throughout the cell cycle, especially during mitosis and cytokinesis. Furthermore, we obtained evidence that the closely related kinases NEK6 and NEK7 do not share common interactors, with the exception of NEK9, and display different modes of protein interaction, depending on their N- and C-terminal regions, in distinct fashions. In summary, our work shows for the first time a comprehensive NEK7 interactome that, combined with functional in vitro and in vivo assays, suggests that NEK7 is a multifunctional kinase acting in different cellular processes in concert with cell division signaling and independently of NEK6.


Subject(s)
Protein Interaction Maps/physiology , Protein Serine-Threonine Kinases/metabolism , Cell Cycle/physiology , Humans , Immunoprecipitation , Mass Spectrometry , NIMA-Related Kinases , Protein Binding , Protein Serine-Threonine Kinases/chemistry , Proteomics , Two-Hybrid System Techniques
8.
Plant Physiol ; 163(1): 232-42, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23898043

ABSTRACT

Transcription activator-like (TAL) effectors from Xanthomonas species pathogens act as transcription factors in plant cells; however, how TAL effectors activate host transcription is unknown. We found previously that TAL effectors of the citrus canker pathogen Xanthomonas citri, known as PthAs, bind the carboxyl-terminal domain of the sweet orange (Citrus sinensis) RNA polymerase II (Pol II) and inhibit the activity of CsCYP, a cyclophilin associated with the carboxyl-terminal domain of the citrus RNA Pol II that functions as a negative regulator of cell growth. Here, we show that PthA4 specifically interacted with the sweet orange MAF1 (CsMAF1) protein, an RNA polymerase III (Pol III) repressor that controls ribosome biogenesis and cell growth in yeast (Saccharomyces cerevisiae) and human. CsMAF1 bound the human RNA Pol III and rescued the yeast maf1 mutant by repressing tRNA(His) transcription. The expression of PthA4 in the maf1 mutant slightly restored tRNA(His) synthesis, indicating that PthA4 counteracts CsMAF1 activity. In addition, we show that sweet orange RNA interference plants with reduced CsMAF1 levels displayed a dramatic increase in tRNA transcription and a marked phenotype of cell proliferation during canker formation. Conversely, CsMAF1 overexpression was detrimental to seedling growth, inhibited tRNA synthesis, and attenuated canker development. Furthermore, we found that PthA4 is required to elicit cankers in sweet orange leaves and that depletion of CsMAF1 in X. citri-infected tissues correlates with the development of hyperplastic lesions and the presence of PthA4. Considering that CsMAF1 and CsCYP function as canker suppressors in sweet orange, our data indicate that TAL effectors from X. citri target negative regulators of RNA Pol II and Pol III to coordinately increase the transcription of host genes involved in ribosome biogenesis and cell proliferation.


Subject(s)
Citrus/physiology , Plant Diseases/genetics , Plant Proteins/physiology , RNA Polymerase III/antagonists & inhibitors , Xanthomonas , Amino Acid Sequence , Citrus/genetics , Citrus/microbiology , Conserved Sequence , Humans , Molecular Sequence Data , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Repressor Proteins/chemistry , Saccharomyces cerevisiae/genetics , Sequence Alignment
9.
Biochim Biophys Acta ; 1764(4): 724-34, 2006 Apr.
Article in English | MEDLINE | ID: mdl-16517231

ABSTRACT

The yeast Tap42 and mammalian alpha4 proteins belong to a highly conserved family of regulators of the type 2A phosphatases, which participate in the rapamycin-sensitive signaling pathway, connecting nutrient availability to cell growth. The mechanism of regulation involves binding of Tap42 to Sit4 and PPH21/22 in yeast and binding of alpha4 to the catalytic subunits of type 2A-related phosphatases PP2A, PP4 and PP6 in mammals. Both recombinant proteins undergo partial proteolysis, generating stable N-terminal fragments. The full-length proteins and alpha4 C-terminal deletion mutants at amino acids 222 (alpha4Delta222), 236 (alpha4Delta236) and 254 (alpha4Delta254) were expressed in E. coli. alpha4Delta254 undergoes proteolysis, producing a fragment similar to the one generated by full-length alpha4, whereas alpha4Delta222 and alpha4Delta236 are highly stable proteins. alpha4 and Tap42 show alpha-helical circular dichroism spectra, as do their respective N-terminal proteolysis resistant products. The cloned truncated proteins alpha4Delta222 and alpha4Delta236, however, possess a higher content of alpha-helix, indicating that the C-terminal region is less structured, which is consistent with its higher sensitivity to proteolysis. In spite of their higher secondary structure content, alpha4Delta222 and alpha4Delta236 showed thermal unfolding kinetics similar to the full-length alpha4. Based on small angle X-ray scattering (SAXS), the calculated radius of gyration for alpha4 and Tap42 were 41.2 +/- 0.8 A and 42.8 +/- 0.7 A and their maximum dimension approximately 142 A and approximately 147 A, respectively. The radii of gyration for alpha4Delta222 and alpha4Delta236 were 21.6 +/- 0.3 A and 25.7 +/- 0.2 A, respectively. Kratky plots show that all studied proteins show variable degree of compactness. Calculation of model structures based on SAXS data showed that alpha4Delta222 and alpha4Delta236 proteins have globular conformation, whereas alpha4 and Tap42 exhibit elongated shapes.


Subject(s)
Intracellular Signaling Peptides and Proteins/chemistry , Saccharomyces cerevisiae Proteins/chemistry , Adaptor Proteins, Signal Transducing , Amino Acid Sequence , Circular Dichroism , Escherichia coli/metabolism , Hot Temperature , Humans , Hydrophobic and Hydrophilic Interactions , Models, Structural , Molecular Chaperones , Molecular Sequence Data , Protein Folding , Scattering, Radiation , Sequence Alignment , X-Rays
SELECTION OF CITATIONS
SEARCH DETAIL
...