Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Cryst Growth Des ; 19(3): 1709-1719, 2019 Mar 06.
Article in English | MEDLINE | ID: mdl-30872978

ABSTRACT

After years of controversy over the solid state structure of the essential amino acid l-phenylalanine, four different polymorphic forms were published recently. The common form I has symmetry P21 with four molecules in the asymmetric unit (Z' = 4), similar to form III, but with a different arrangement of molecular bilayers. Form II, obtained from the hydrate at very low humidity, is unrelated to forms I and III, as is the high-density form IV. The present investigation demonstrates that this prototype aromatic amino acid has two additional high-temperature phases Ih and IIIh obtained from form I and form III above 458 and 440 K, respectively, when flipping between two alternative side-chain conformations becomes dynamic and causes pairs of molecules, initially crystallographically independent, to become equivalent above a sharp transition temperature. These abrupt and reversible phase changes occur with a reduction of Z' from 4 (low T) to 2 (high T) and modified crystal symmetry. We furthermore experienced an example of disappearing polymorph for form I which after growing form III in one of our laboratories could no longer be crystallized at room temperature. In contrast, form III crystals may be irreversibly converted to form I crystals as a result of sliding of molecular bilayers in the crystal at elevated temperature. No conversions between the high-temperature forms Ih and IIIh were found. The remarkable crystallographic results are here corroborated by Molecular Dynamics and metadynamics simulations of the form I - form III system.

2.
Cryst Growth Des ; 18(1): 242-252, 2018 Jan 03.
Article in English | MEDLINE | ID: mdl-30258304

ABSTRACT

The rich landscape of enantiotropically related polymorphic forms and their solid-state phase transitions of dl-2-aminoheptanoic acid (dl-AHE) has been explored using a range of complementary characterization techniques, and is largely exemplary of the polymorphic behavior of linear aliphatic amino acids. As many as five new polymorphic forms were found, connected by four fully reversible solid-state phase transitions. Two low temperature forms were refined in a high Z' crystal structure, which is a new phenomenon for linear aliphatic amino acids. All five structures consist of two-dimensional hydrogen-bonded bilayers interconnected by weak van der Waals interactions. The single-crystal-to-single-crystal phase transitions involve shifts of bilayers and/or conformational changes in the aliphatic chain. Compared to two similar phase transitions of the related amino acid dl-norleucine, the enthalpies of transition and NMR chemical shift differences are notably smaller in dl-aminoheptanoic acid. This is explained to be a result of both the nature of the conformational changes and the increased chain length, weakening the interactions between the bilayers.

3.
J Chem Phys ; 148(14): 144703, 2018 Apr 14.
Article in English | MEDLINE | ID: mdl-29655363

ABSTRACT

The role that additives play in the growth of sodium chloride is a topic which has been widely researched but not always fully understood at an atomic level. Lead chloride (PbCl2) is one such additive which has been reported to have growth inhibition effects on NaCl {100} and {111}; however, no definitive evidence has been reported which details the mechanism of this interaction. In this investigation, we used the technique of surface x-ray diffraction to determine the interaction between PbCl2 and NaCl {100} and the structure at the surface. We find that Pb2+ replaces a surface Na+ ion, while a Cl- ion is located on top of the Pb2+. This leads to a charge mismatch in the bulk crystal, which, as energetically unfavourable, leads to a growth blocking effect. While this is a similar mechanism as in the anticaking agent ferrocyanide, the effect of PbCl2 is much weaker, most likely due to the fact that the Pb2+ ion can more easily desorb. Moreover, PbCl2 has an even stronger effect on NaCl {111}.

4.
Langmuir ; 34(13): 3821-3826, 2018 04 03.
Article in English | MEDLINE | ID: mdl-29521510

ABSTRACT

The interfacial structure of muscovite in contact with aqueous CsI solutions was measured using surface X-ray diffraction for several CsI concentrations (2-1000 mM). At CsI concentrations up to 200 mM, Cs+ adsorption is likely hindered by H3O+, as both cations compete for the adsorption site above the muscovite hexagonal cavity. Above this concentration, more Cs+ adsorbs than is required to compensate the negatively charged muscovite surface, which means that coadsorption of an anion takes place. The I- anion does not coadsorb in an ordered manner. Moreover, the hydration ring and water layers do not change significantly as a function of the CsI concentration.

5.
Faraday Discuss ; 179: 421-36, 2015.
Article in English | MEDLINE | ID: mdl-25880981

ABSTRACT

DL-Norleucine is a molecular crystal exhibiting two enantiotropic phase transitions. The high temperature α ↔ γ transition has been shown to proceed through nucleation and growth [Mnyukh et al., J. Phys. Chem. Solids, 1975, 36, 127]. We focus on the low temperature ß â†” α transition in a combined computational and experimental study. The temperature dependence of the structural and energetic properties of both polymorphic forms is nearly identical. Molecular dynamics simulations and nudged elastic band calculations of the transition process itself, suggest that the transition is governed by cooperative movements of bilayers over relatively large energy barriers.


Subject(s)
Norleucine/chemistry , Crystallization , Molecular Dynamics Simulation , Stereoisomerism , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...