Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 67(5): 4063-4082, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38482827

ABSTRACT

Dengue is a global public health threat, with about half of the world's population at risk of contracting this mosquito-borne viral disease. Climate change, urbanization, and global travel accelerate the spread of dengue virus (DENV) to new areas, including southern parts of Europe and the US. Currently, no dengue-specific small-molecule antiviral for prophylaxis or treatment is available. Here, we report the discovery of JNJ-1802 as a potent, pan-serotype DENV inhibitor (EC50's ranging from 0.057 to 11 nM against the four DENV serotypes). The observed oral bioavailability of JNJ-1802 across preclinical species, its low clearance in human hepatocytes, the absence of major in vitro pharmacology safety alerts, and a dose-proportional increase in efficacy against DENV-2 infection in mice were all supportive of its selection as a development candidate against dengue. JNJ-1802 is being progressed in clinical studies for the prevention or treatment of dengue.


Subject(s)
Dengue Virus , Dengue , Hydrocarbons, Halogenated , Indoles , Mice , Humans , Animals , Serogroup , Dengue/drug therapy
2.
Mol Cancer Ther ; 23(1): 3-13, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-37748190

ABSTRACT

The Hippo pathway and its downstream effectors, the YAP and TAZ transcriptional coactivators, are deregulated in multiple different types of human cancer and are required for cancer cell phenotypes in vitro and in vivo, while largely dispensable for tissue homeostasis in adult mice. YAP/TAZ and their main partner transcription factors, the TEAD1-4 factors, are therefore promising anticancer targets. Because of frequent YAP/TAZ hyperactivation caused by mutations in the Hippo pathway components NF2 and LATS2, mesothelioma is one of the prime cancer types predicted to be responsive to YAP/TAZ-TEAD inhibitor treatment. Mesothelioma is a devastating disease for which currently no effective treatment options exist. Here, we describe a novel covalent YAP/TAZ-TEAD inhibitor, SWTX-143, that binds to the palmitoylation pocket of all four TEAD isoforms. SWTX-143 caused irreversible and specific inhibition of the transcriptional activity of YAP/TAZ-TEAD in Hippo-mutant tumor cell lines. More importantly, YAP/TAZ-TEAD inhibitor treatment caused strong mesothelioma regression in subcutaneous xenograft models with human cells and in an orthotopic mesothelioma mouse model. Finally, SWTX-143 also selectively impaired the growth of NF2-mutant kidney cancer cell lines, suggesting that the sensitivity of mesothelioma models to these YAP/TAZ-TEAD inhibitors can be extended to other tumor types with aberrations in Hippo signaling. In brief, we describe a novel and specific YAP/TAZ-TEAD inhibitor that has potential to treat multiple Hippo-mutant solid tumor types.


Subject(s)
Mesothelioma, Malignant , Mesothelioma , Adult , Humans , Animals , Mice , Hippo Signaling Pathway , YAP-Signaling Proteins , Transcription Factors/genetics , Transcription Factors/metabolism , Mesothelioma/drug therapy , Mesothelioma/genetics , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Tumor Suppressor Proteins/metabolism
3.
J Med Chem ; 66(13): 8808-8821, 2023 07 13.
Article in English | MEDLINE | ID: mdl-37389813

ABSTRACT

In the absence of any approved dengue-specific treatment, the discovery and development of a novel small-molecule antiviral for the prevention or treatment of dengue are critical. We previously reported the identification of a novel series of 3-acyl-indole derivatives as potent and pan-serotype dengue virus inhibitors. We herein describe our optimization efforts toward preclinical candidates 24a and 28a with improved pan-serotype coverage (EC50's against the four DENV serotypes ranging from 0.0011 to 0.24 µM for 24a and from 0.00060 to 0.084 µM for 28a), chiral stability, and oral bioavailability in preclinical species, as well as showing a dose-proportional increase in efficacy against DENV-2 infection in vivo in mice.


Subject(s)
Dengue Virus , Dengue , Mice , Animals , Serogroup , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Dengue/drug therapy , Indoles/pharmacology , Indoles/therapeutic use
4.
J Med Chem ; 61(18): 8390-8401, 2018 09 27.
Article in English | MEDLINE | ID: mdl-30149709

ABSTRACT

3-Acyl-indole derivative 1 was identified as a novel dengue virus (DENV) inhibitor from a DENV serotype 2 (DENV-2) phenotypic antiviral screen. Extensive SAR studies led to the discovery of new derivatives with improved DENV-2 potency as well as activity in nanomolar to micromolar range against the other DENV serotypes. In addition to the potency, physicochemical properties and metabolic stability in rat and human microsomes were improved during the optimization process. Chiral separation of the racemic mixtures showed a clear preference for one of the two enantiomers. Furthermore, rat pharmacokinetics of two compounds will be discussed in more detail, demonstrating the potential of this new series of pan-serotype-DENV inhibitors.


Subject(s)
Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Dengue Virus/drug effects , Dengue/drug therapy , Drug Discovery , Indoles/chemistry , Microsomes, Liver/metabolism , Animals , Chlorocebus aethiops , Dengue/virology , Dengue Virus/classification , Drug Design , Humans , Microsomes, Liver/drug effects , Models, Molecular , Molecular Structure , Protein Conformation , Rats , Structure-Activity Relationship , Vero Cells
5.
Antimicrob Agents Chemother ; 56(8): 4365-74, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22664975

ABSTRACT

Targeting the HIV integrase (HIV IN) is a clinically validated approach for designing novel anti-HIV therapies. We have previously described the discovery of a novel class of integration inhibitors, 2-(quinolin-3-yl)acetic acid derivatives, blocking HIV replication at a low micromolar concentration through binding in the LEDGF/p75 binding pocket of HIV integrase, hence referred to as LEDGINs. Here we report the detailed characterization of their mode of action. The design of novel and more potent analogues with nanomolar activity enabled full virological evaluation and a profound mechanistic study. As allosteric inhibitors, LEDGINs bind to the LEDGF/p75 binding pocket in integrase, thereby blocking the interaction with LEDGF/p75 and interfering indirectly with the catalytic activity of integrase. Detailed mechanism-of-action studies reveal that the allosteric mode of inhibition is likely caused by an effect on HIV-1 integrase oligomerization. The multimodal inhibition by LEDGINs results in a block in HIV integration and in a replication deficiency of progeny virus. The allosteric nature of LEDGINs leads to synergy in combination with the clinically approved active site HIV IN strand transfer inhibitor (INSTI) raltegravir, and cross-resistance profiling proves the distinct mode of action of LEDGINs and INSTIs. The allosteric nature of inhibition and compatibility with INSTIs underline an interest in further (clinical) development of LEDGINs.


Subject(s)
HIV Integrase Inhibitors/pharmacology , HIV Integrase/chemistry , HIV Integrase/metabolism , HIV-1/drug effects , Intercellular Signaling Peptides and Proteins/metabolism , Quinolines/pharmacology , Virus Integration/drug effects , Binding Sites/drug effects , Catalytic Domain/drug effects , Cell Line , HIV Integrase Inhibitors/chemistry , HIV-1/physiology , Humans , Protein Multimerization , Pyrrolidinones/pharmacology , Quinolines/chemistry , Raltegravir Potassium , Virus Replication/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...