Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 6(7): e22728, 2011.
Article in English | MEDLINE | ID: mdl-21829493

ABSTRACT

Cucumber (Cucumis sativus L.), a widely cultivated crop, has originated from Eastern Himalayas and secondary domestication regions includes highly divergent climate conditions e.g. temperate and subtropical. We wanted to uncover adaptive genome differences between the cucumber cultivars and what sort of evolutionary molecular mechanisms regulate genetic adaptation of plants to different ecosystems and organism biodiversity. Here we present the draft genome sequence of the Cucumis sativus genome of the North-European Borszczagowski cultivar (line B10) and comparative genomics studies with the known genomes of: C. sativus (Chinese cultivar--Chinese Long (line 9930)), Arabidopsis thaliana, Populus trichocarpa and Oryza sativa. Cucumber genomes show extensive chromosomal rearrangements, distinct differences in quantity of the particular genes (e.g. involved in photosynthesis, respiration, sugar metabolism, chlorophyll degradation, regulation of gene expression, photooxidative stress tolerance, higher non-optimal temperatures tolerance and ammonium ion assimilation) as well as in distributions of abscisic acid-, dehydration- and ethylene-responsive cis-regulatory elements (CREs) in promoters of orthologous group of genes, which lead to the specific adaptation features. Abscisic acid treatment of non-acclimated Arabidopsis and C. sativus seedlings induced moderate freezing tolerance in Arabidopsis but not in C. sativus. This experiment together with analysis of abscisic acid-specific CRE distributions give a clue why C. sativus is much more susceptible to moderate freezing stresses than A. thaliana. Comparative analysis of all the five genomes showed that, each species and/or cultivars has a specific profile of CRE content in promoters of orthologous genes. Our results constitute the substantial and original resource for the basic and applied research on environmental adaptations of plants, which could facilitate creation of new crops with improved growth and yield in divergent conditions.


Subject(s)
Adaptation, Physiological , Chromosomes, Plant/genetics , Cucumis sativus/genetics , Evolution, Molecular , Genes, Plant , Genome, Plant , Chromosome Mapping , Chromosomes, Artificial, Bacterial , DNA, Plant/genetics , Gene Expression Regulation, Plant , Polymerase Chain Reaction , Promoter Regions, Genetic/genetics , Regulatory Sequences, Nucleic Acid , Sequence Analysis, DNA
2.
J Appl Genet ; 47(1): 17-21, 2006.
Article in English | MEDLINE | ID: mdl-16424604

ABSTRACT

Somaclonal variation commonly occurs during in vitro plant regeneration and may introduce unintended changes in numerous plant characters. In order to assess the range of tissue-culture-responsive changes on the biochemical level, the metabolic profiles of diploid and tetraploid cucumber R1 plants regenerated from leaf-derived callus were determined. Gas chromatography and mass spectrometry were used for monitoring of 48 metabolites and many significant changes were found in metabolic profiles of these plants as compared to a seed-derived control. Most of the changes were common to diploids and tetraploids and were effects of tissue culture. However, tetraploids showed quantitative changes in 14 metabolites, as compared to regenerated diploids. These changes include increases in serine, glucose-6P, fructose-6P, oleic acid and shikimic acid levels. Basing on this study we conclude that the variation in metabolic profiles does not correlate directly with the range of genome changes in tetraploids.


Subject(s)
Cucumis sativus/genetics , Polyploidy , Tissue Culture Techniques , Diploidy , Fructosephosphates/metabolism , Gas Chromatography-Mass Spectrometry , Genetic Variation , Glucose-6-Phosphate/metabolism , Oleic Acid/metabolism , Plant Leaves/metabolism , Seeds/chemistry , Serine/metabolism , Shikimic Acid/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...