Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 16(15): 19594-19604, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38588386

ABSTRACT

Polydimethylsiloxane (PDMS) has been widely used as a surface coating material, which has been reported to possess dynamic omniphobicity to a wide range of both polar and nonpolar solvents due to its high segmental flexibility and mobility. However, such high flexibility and mobility also enable penetration of small molecules into PDMS coatings, which alter the chemical and physical properties of the coating layers. To improve the anti-penetration properties of PDMS, a series of fluorinated alkyl segments are grafted to a diblock copolymer of polystyrene-block-poly(vinyl methyl siloxane) (PS-b-PVMS) using thiol-ene click reactions. This article reports the chemical characterization of these model fluorosilicone block copolymers and uses fluorescence measurements to investigate the dye penetration characteristics of polymer thin films. The introduction of longer fluorinated alkyl chains can gradually increase the anti-penetration properties as the time to reach the maximum fluorescence intensity (tpeak) gradually increases from 11 s of PS-b-PVMS to more than 1000 s of PS-b-P(n-C6F13-VMS). The improvement of anti-penetration properties is attributed to stronger inter-/intrachain interactions, phase segregation of ordered fluorinated side chains, and enhanced hydrophobicity caused by the grafting of fluorinated alkyl chains.

2.
Metallomics ; 15(8)2023 08 01.
Article in English | MEDLINE | ID: mdl-37370221

ABSTRACT

The movement of metals through the environment links together a wide range of scientific fields: from earth sciences and geology as weathering releases minerals; to environmental sciences as metals are mobilized and transformed, cycling through soil and water; to biology as living things take up metals from their surroundings. Studies of these fundamental processes all require quantitative analysis of metal concentrations, locations, and chemical states. Synchrotron X-ray tools can address these requirements with high sensitivity, high spatial resolution, and minimal sample preparation. This perspective describes the state of fundamental scientific questions in the lifecycle of metals, from rocks to ecosystems, from soils to plants, and from environment to animals. Key X-ray capabilities and facility infrastructure for future synchrotron-based analytical resources serving these areas are summarized, and potential opportunities for future experiments are explored.


Subject(s)
Ecosystem , Synchrotrons , Animals , Metals , Soil , Life Cycle Stages
3.
Methods Mol Biol ; 2665: 177-189, 2023.
Article in English | MEDLINE | ID: mdl-37166601

ABSTRACT

Recent improvements in synchrotron-based X-ray fluorescence (SXRF) microscopy established it as an advanced analytical tool for analyzing 2D- and 3D distribution of mineral elements in plants. Among existing imaging techniques, SXRF microscopy offers several unique capabilities, including in situ metal quantification in plant tissues and high sensitivity, as low as 1 mg kg-1, at the nanoscale spatial resolution. SXRF is increasingly utilized in different plant science disciplines to provide a fundamental understanding of metal homeostasis, and the function of trace elements in plant metabolism and development. Here, we describe methods for SXRF imaging, including sample preparation, the optimization of conventional SXRF for analyzing trace elements, and the development of confocal SXRF (C-SXRF).


Subject(s)
Trace Elements , X-Rays , Synchrotrons , Metals/metabolism , Microscopy, Fluorescence , Plants/metabolism , Spectrometry, X-Ray Emission/methods
4.
Plant Cell ; 35(6): 2157-2185, 2023 05 29.
Article in English | MEDLINE | ID: mdl-36814393

ABSTRACT

Copper (Cu) and iron (Fe) are essential micronutrients that are toxic when accumulating in excess in cells. Thus, their uptake by roots is tightly regulated. While plants sense and respond to local Cu availability, the systemic regulation of Cu uptake has not been documented in contrast to local and systemic control of Fe uptake. Fe abundance in the phloem has been suggested to act systemically, regulating the expression of Fe uptake genes in roots. Consistently, shoot-to-root Fe signaling is disrupted in Arabidopsis thaliana mutants lacking the phloem companion cell-localized Fe transporter, OLIGOPEPTIDE TRANSPORTER 3 (AtOPT3). We report that AtOPT3 also transports Cu in heterologous systems and contributes to its delivery from sources to sinks in planta. The opt3 mutant contained less Cu in the phloem, was sensitive to Cu deficiency and mounted a transcriptional Cu deficiency response in roots and young leaves. Feeding the opt3 mutant and Cu- or Fe-deficient wild-type seedlings with Cu or Fe via the phloem in leaves downregulated the expression of both Cu- and Fe-deficiency marker genes in roots. These data suggest the existence of shoot-to-root Cu signaling, highlight the complexity of Cu/Fe interactions, and the role of AtOPT3 in fine-tuning root transcriptional responses to the plant Cu and Fe needs.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/genetics , Arabidopsis/metabolism , Copper , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Phloem/genetics , Phloem/metabolism , Homeostasis , Iron/metabolism , Plants/metabolism , Membrane Transport Proteins/metabolism
5.
J Synchrotron Radiat ; 28(Pt 2): 429-438, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33650554

ABSTRACT

The design and implementation of new beamlines featuring side-bounce (single-reflection) diamond monochromators at Cornell High Energy Synchrotron Source (CHESS) are described. Undulator radiation is monochromated using an interchangeable set of diamond crystal plates reflecting radiation in the horizontal (synchrotron) plane, where each crystal plate is set to one of the low-index Bragg reflections (111, 220, 311 and 400) in either Bragg or Laue reflection geometries. At the nominal Bragg angle of 18° these reflections deliver monochromated X-rays with photon energies of 9.7, 15.9, 18.65 and 22.5 keV, respectively. An X-ray mirror downstream of the diamond monochromator is used for rejection of higher radiation harmonics and for initial focusing of the monochromated beam. The characteristics of the X-ray beam entering the experimental station were measured experimentally and compared with the results of simulations. A reasonable agreement is demonstrated. It is shown that the use of selected high-dislocation-density `mosaic' diamond single-crystal plates produced using the chemical vapor deposition method yields a few-fold enhancement in the flux density of the monochromated beam in comparison with that delivered by perfect crystals under the same conditions. At present, the Functional Materials Beamline at CHESS, which is used for time-resolved in situ characterization of soft materials during processing, has been outfitted with the described setup.

6.
J Trace Elem Med Biol ; 55: 143-153, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31345352

ABSTRACT

OBJECTIVE: The principal goal of this study was to investigate the uptake and distribution of lead (Pb) in the horns of Pb-dosed goats, and to explore possible links to their historical Pb dosing records. Horn is a keratinized material that grows in discrete increments with the potential to preserve the historical record of past environmental exposures. While previous studies have leveraged this potential to examine environmental and biological phenomena in horns, Pb uptake has never been explored. METHODS: Horns were collected post-mortem from three goats that had been previously used to produce blood lead reference materials for the New York State proficiency testing program. The animals were periodically dosed with lead acetate, administered orally in a capsule, over a 5 to 8-year period. Horn cross sections were taken from each animal and analyzed using synchrotron radiation-induced micro X-ray fluorescence spectrometry (SR-µXRF) at the Cornell High Energy Synchrotron Source (CHESS). RESULTS: Elemental distribution maps were obtained by SR-µXRF for Pb, Ca, S, Se, and three other elements (Br, Zn and Cu), with values reported quantitatively as a mass fraction (µg/g for trace elements and mg/g for Ca and S). Accumulations of Pb were clearly visible as a series of narrow "rings" in each of the horn samples analyzed. The elements Ca, S, Br, Zn, and Cu were also detected as discrete rings within each cross-section, with Br strongly correlated with S in the samples examined. A marginal increase in Se may coincide with Pb accumulation in horn cross-sections. Annual mineralization estimates based on the relative distribution of Ca and S were used to establish a tentative timeline for horn growth, with each timeline linked to the pattern of Pb accumulation in the corresponding horn cross-section sample. CONCLUSIONS: Following ingestion, absorbed Pb is eventually deposited into caprine horns, resulting in discrete accumulations or "rings." Elemental mapping by SR-µXRF clearly show Ca-rich layers that vary with annual periodicity, consistent with previous reports of horn mineralization. Localized enrichment of Cu, Zn, Br and S appear to coincide with the keratinized regions related to the annual growth ring pattern in horns. Spatial analysis of horns for Pb accumulation may be useful as a qualitative marker of time-resolved exposures that may reflect specific periods of acute Pb absorption.


Subject(s)
Horns/chemistry , Horns/metabolism , Lead/pharmacokinetics , Spectrometry, X-Ray Emission , Synchrotrons , Animals , Dose-Response Relationship, Drug , Goats , Horns/growth & development , Lead/administration & dosage , Tissue Distribution
7.
J Anal At Spectrom ; 33(10): 1616-1630, 2018 Oct 01.
Article in English | MEDLINE | ID: mdl-32624635

ABSTRACT

The arsenic content of dried baby shrimp (Acetes sp.) was investigated as part of an independent field study of human exposure to toxic metals/metalloids among the ethnic Chinese community located in Upstate New York. The dried baby shrimp were analyzed in a home environment using a portable X-ray Fluorescence (XRF) instrument based on monochromatic excitation. Study participants had obtained their dried baby shrimp either from a local Chinese market or prepared them at home. The shrimp are typically between 10-20 mm in size and are consumed whole, without separating the tail from the head. Elevated levels of As were detected using portable XRF, ranging between 5-30 µg/g. Shrimp samples were taken to the Cornell High Energy Synchrotron Source (CHESS) for Synchrotron Radiation µXRF (SR-µXRF) elemental mapping using a 384-pixel Maia detector system. The Maia detector provided high resolution trace element images for As, Ca, and Br, (among others) and showed localized accumulation of As within the shrimp's cephalothorax (head), and various abdominal segments. As quantification by SR-µXRF was performed using a Lobster hepatopancreas reference material pellet (NRC-CNRC TORT-2), with results in good agreement with both portable XRF and ICP-MS. Additional As characterization using µX-ray Absorption Near Edge Spectroscopy (µXANES) with the Maia XRF detector at CHESS identified arsenobetaine and/or arsenocholine as the possible As species present. Further arsenic speciation analysis by LC-ICP-MS/MS confirmed that the majority of As (>95%) is present as the largely non-toxic arsenobetaine species with trace amounts of arsenocholine, methylated As and inorganic As species detected.

SELECTION OF CITATIONS
SEARCH DETAIL
...