Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Exp Brain Res ; 240(1): 147-158, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34677632

ABSTRACT

Skeletal muscles embed multiple tendon organs, both at the proximal and distal ends of muscle fibers. One of the functions of such spatial distribution may be to provide locally unique force feedback, which may become more important when stresses are distributed non-uniformly within the muscle. Forces exerted by connections between adjacent muscles (i.e. epimuscular myofascial forces) may cause such local differences in force. The aim of this exploratory study was to investigate the effects of mechanical interactions between adjacent muscles on sensory encoding by tendon organs. Action potentials from single afferents were recorded intra-axonally in response to ramp-hold release (RHR) stretches of a passive agonistic muscle at different lengths or relative positions of its passive synergist. The tendons of gastrocnemius (GAS), plantaris (PL) and soleus (SO) muscles were cut from the skeleton for attachment to servomotors. Connective tissues among these muscles were kept intact. Lengthening GAS + PL decreased the force threshold of SO tendon organs (p = 0.035). The force threshold of lateral gastrocnemius (LG) tendon organs was not affected by SO length (p = 0.371). Also displacing LG + PL, kept at a constant muscle-tendon unit length, from a proximal to a more distal position resulted in a decrease in force threshold of LG tendon organs (p = 0.007). These results indicate that tendon organ firing is affected by changes in length and/or relative position of adjacent synergistic muscles. We conclude that tendon organs can provide the central nervous system with information about local stresses caused by epimuscular myofascial forces.


Subject(s)
Muscle, Skeletal , Tendons , Animals , Biomechanical Phenomena , Humans , Mechanoreceptors , Muscle Contraction , Rats , Rats, Wistar
2.
J Neurophysiol ; 115(6): 3146-55, 2016 06 01.
Article in English | MEDLINE | ID: mdl-27075540

ABSTRACT

Skeletal muscle force can be transmitted to the skeleton, not only via its tendons of origin and insertion but also through connective tissues linking the muscle belly to surrounding structures. Through such epimuscular myofascial connections, length changes of a muscle may cause length changes within an adjacent muscle and hence, affect muscle spindles. The aim of the present study was to investigate the effects of epimuscular myofascial forces on feedback from muscle spindles in triceps surae muscles of the rat. We hypothesized that within an intact muscle compartment, muscle spindles not only signal length changes of the muscle in which they are located but can also sense length changes that occur as a result of changing the length of synergistic muscles. Action potentials from single afferents were measured intra-axonally in response to ramp-hold release (RHR) stretches of an agonistic muscle at different lengths of its synergist, as well as in response to synergist RHRs. A decrease in force threshold was found for both soleus (SO) and lateral gastrocnemius afferents, along with an increase in length threshold for SO afferents. In addition, muscle spindle firing could be evoked by RHRs of the synergistic muscle. We conclude that muscle spindles not only signal length changes of the muscle in which they are located but also local length changes that occur as a result of changing the length and relative position of synergistic muscles.


Subject(s)
Action Potentials/physiology , Muscle Spindles/physiology , Muscle, Skeletal/cytology , Analysis of Variance , Animals , Biomechanical Phenomena , Female , Isometric Contraction , Models, Biological , Muscle, Skeletal/physiology , Rats , Rats, Wistar , Stress, Mechanical
3.
J Sports Sci ; 30(2): 166-74, 2012.
Article in English | MEDLINE | ID: mdl-22117186

ABSTRACT

We hypothesized that imagery training would improve the fast onset of neuromuscular activation and thereby fast knee extensor isometric torque development. Forty young healthy participants, not involved in strength training, were assigned to one of four groups: physical training, imagery training, placebo training or control. The three training groups had three 15 min sessions per week for 4 weeks, with a 90 ° knee angle but were tested also at 120 °. At 90 ° knee angle, maximal torque increased (-8%) similarly in all three training groups. The torque-time integral (contractile impulse) over the first 40 ms after torque onset (TTI40) increased (P < 0.05) after physical training (by -100%), but only at 90 °. This increase was significantly different from the delta values (change pre to post) in the control and placebo groups, whereas delta values in the imagery group were similar to those in the placebo group. The increases in TTI40 following physical training were related (r (2) = 0.81, P < 0.05) to significant increases of knee extensor rectified surface EMG at torque onset (EMG40). In conclusion, only physical training led to a knee angle specific increase of contractile impulse that was significantly different from placebo and controls and that was related to improved onset of neuromuscular activation.


Subject(s)
Isometric Contraction , Knee Joint/physiology , Mental Processes , Muscle Strength , Nervous System Physiological Phenomena , Resistance Training , Adolescent , Adult , Female , Humans , Imagery, Psychotherapy , Knee , Lower Extremity , Male , Muscle, Skeletal , Physical Education and Training , Torque , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...