Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Gels ; 9(11)2023 Nov 09.
Article in English | MEDLINE | ID: mdl-37998978

ABSTRACT

This manuscript explores the interaction between methylene blue dye and gelatin within a membrane using spectroscopy and image analysis. Emphasis is placed on methylene blue's unique properties, specifically its ability to oscillate between two distinct resonance states, each with unique light absorption characteristics. Image analysis serves as a tool for examining dye diffusion and absorption. The results indicate a correlation between dye concentrations and membrane thickness. Thinner layers exhibit a consistent dye concentration, implying an even distribution of the dye during the diffusion process. However, thicker layers display varying concentrations at different edges, suggesting the establishment of a diffusion gradient. Moreover, the authors observe an increased concentration of gelatin at the peripheries rather than at the center, possibly due to the swelling of the dried sample and a potential water concentration gradient. The manuscript concludes by suggesting image analysis as a practical alternative to spectral analysis, particularly for detecting whether methylene blue has been adsorbed onto the macromolecular network. These findings significantly enhance the understanding of the complex interactions between methylene blue and gelatin in a membrane and lay a solid foundation for future research in this field.

2.
Gels ; 9(7)2023 Jul 22.
Article in English | MEDLINE | ID: mdl-37504469

ABSTRACT

Ten different hydrogels were prepared and analyzed from the point of view of their use in soil. FT-IR spectra, morphology, swelling ability, and rheological properties were determined for their characterization and appraisal of their stability. The aim was to characterize prepared materials containing different amounts of NPK as mineral fertilizer, lignohumate as a source of organic carbon, and its combination. This study of stability was focused on utility properties in their application in soil-repeated drying/re-swelling cycles and possible freezing in winter. Lignohumate supported the water absorbency, while the addition of NPK caused a negative effect. Pore sizes decreased with NPK addition. Lignohumate incorporated into polymers resulted in a much miscellaneous structure, rich in different pores and voids of with a wide range of sizes. NPK fertilizer supported the elastic character of prepared materials, while the addition of lignohumate shifted their rheological behavior to more liquid. Both dynamic moduli decreased in time. The most stable samples appeared to contain only one fertilizer constituent (NPK or lignohumate). Repeated re-swelling resulted in an increase in elastic character, which was connected with the gradual release of fertilizers. A similar effect was observed with samples that were frozen and defrosted, except samples containing a higher amount of NPK without lignohumate. A positive effect of acrylamide on superabsorbent properties was not confirmed.

3.
Gels ; 9(5)2023 Apr 27.
Article in English | MEDLINE | ID: mdl-37232959

ABSTRACT

Transport properties are one of the most crucial assets of hydrogel samples, influencing their main application potential, i.e., as drug carriers. Depending on the type of drug or the application itself, it is very important to be able to control these transport properties in an appropriate manner. This study seeks to modify these properties by adding amphiphiles, specifically lecithin. Through its self-assembly, lecithin modifies the inner structure of the hydrogel, which affects its properties, especially the transport ones. In the proposed paper, these properties are studied mainly using various probes (organic dyes) to effectively simulate drugs in simple release diffusion experiments controlled by UV-Vis spectrophotometry. Scanning electron microscopy was used to help characterize the diffusion systems. The effects of lecithin and its concentrations, as well as the effects of variously charged model drugs, were discussed. Lecithin decreases the values of the diffusion coefficient independently of the dye used and the type of crosslinking. The ability to influence transport properties is better observed in xerogel samples. The results, complementing previously published conclusions, showed that lecithin can alter a hydrogel's structure and therefore its transport properties.

4.
Materials (Basel) ; 16(6)2023 Mar 08.
Article in English | MEDLINE | ID: mdl-36984053

ABSTRACT

Protection of concrete against aggressive influences from the surrounding environment becomes an important step to increase its durability. Today, alkali silicate solutions are advantageously used as pore-blocking treatments that increase the hardness and impermeability of the concrete's surface layer. Among these chemical substances, known as concrete densifiers, lithium silicate solutions are growing in popularity. In the present study, the chemical composition of the lithium silicate densifiers is put into context with the properties of the newly created insoluble inorganic gel responsible for the micro-filling effect. Fourier-transform infrared spectroscopy was used as a key method to describe the structure of the formed gel. In this context, the gelation process was studied through the evolution of viscoelastic properties over time using oscillatory measurements. It was found that the gelation process is fundamentally controlled by the molar ratio of SiO2 and Li2O in the densifier. The low SiO2 to Li2O ratio promotes the gelling process, resulting in a rapidly formed gel structure that affects macro characteristics, such as water permeability, directly related to the durability of treated concretes.

5.
Polymers (Basel) ; 14(10)2022 May 13.
Article in English | MEDLINE | ID: mdl-35631889

ABSTRACT

Films prepared from poly(3-hydroxybutyrate-co-4-hydroxybutyrate) copolymers produced by Aneurinibacillus sp. H1 using an automatic film applicator were homogeneous and had a defined thickness, which allowed a detailed study of physicochemical properties. Their properties were compared with those of a poly (3-hydroxybutyrate) homopolymer film prepared by the same procedure, which proved to be significantly more crystalline by DSC and XRD. Structural differences between samples had a major impact on their properties. With increasing 4-hydroxybutyrate content, the ductility and release rate of the model hydrophilic active ingredient increased significantly. Other observed properties, such as the release of the hydrophobic active substance, the contact angle with water and ethylene glycol, or the surface morphology and roughness, were also affected by the composition. The identified properties predetermine these copolymers for wide use in areas such as biomedicine or smart biodegradable packaging for food or cosmetics. The big advantage is the possibility of fine-tuning properties simply by changing the fermentation conditions.

6.
Polymers (Basel) ; 14(5)2022 Feb 23.
Article in English | MEDLINE | ID: mdl-35267689

ABSTRACT

Gradient hydrogels are promising future materials which could be usable in tissue engineering (scaffolds), pharmaceutical (drug delivery systems with controlled release) and many others related disciplines. These hydrogels exhibit a more complex inner (gradient) structure (e.g., concentration gradient) than simple isotropic hydrogel. Gradient-structured hydrogels could be beneficial in, for example, understanding intercellular interactions. The fabrication of gradient hydrogels has been relatively deeply explored, but a comprehensive description of the physico-chemical techniques demonstrating the existence of a gradient structure is still missing. Here, we summarize the state-of-the-art available experimental techniques applicable in proving and/or describing in physico-chemical terms the inner gradient structure of hydrogels. The aim of this paper is to give the reader an overview of the existing database of suitable techniques for characterizing gradient hydrogels.

7.
Gels ; 8(2)2022 Feb 13.
Article in English | MEDLINE | ID: mdl-35200496

ABSTRACT

Nowadays, hydrogels are found in many applications ranging from the industrial to the biological (e.g., tissue engineering, drug delivery systems, cosmetics, water treatment, and many more). According to the specific needs of individual applications, it is necessary to be able to modify the properties of hydrogel materials, particularly the transport and mechanical properties related to their structure, which are crucial for the potential use of the hydrogels in modern material engineering. Therefore, the possibility of preparing hydrogel materials with tunable properties is a very real topic and is still being researched. A simple way to modify these properties is to alter the internal structure by adding another component. The addition of natural substances is convenient due to their biocompatibility and the possibility of biodegradation. Therefore, this work focused on hydrogels modified by a substance that is naturally found in the tissues of our body, namely lecithin. Hydrogels were prepared by different types of crosslinking (physical, ionic, and chemical). Their mechanical properties were monitored and these investigations were supplemented by drying and rehydration measurements, and supported by the morphological characterization of xerogels. With the addition of natural lecithin, it is possible to modify crucial properties of hydrogels such as porosity and mechanical properties, which will play a role in the final applications.

8.
Int J Biol Macromol ; 183: 880-889, 2021 Jul 31.
Article in English | MEDLINE | ID: mdl-33961880

ABSTRACT

Fused deposition modelling (FDM) is a process of additive manufacturing allowing creating of highly precise complex three-dimensional objects for a large range of applications. The principle of FDM is an extrusion of the molten filament and gradual deposition of layers and their solidification. Potential applications in pharmaceutical and medical fields require the development of biodegradable and biocompatible thermoplastics for the processing of filaments. In this work, the potential of production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) (P(3HB-co-4HB)) filaments for FDM was investigated in respect to its thermal stability. Copolymer P(3HB-co-4HB) was biosynthesised by Cupriavidus malaysiensis. Rheological and mechanical properties of the copolymer were modified by the addition of plasticizers or blending with poly(lactic acid). Thermal stability of mixtures was studied employing thermogravimetric analysis and rheological analyses by monitoring the time-dependent changes in the complex viscosity of melt samples. The plasticization of P(3HB-co-4HB) slightly hindered its thermal degradation but the best stabilization effect was found in case of the copolymer blended with poly(lactic acid). Overall, rheological, thermal and mechanical properties demonstrated that the plasticized P(3HB-co-4HB) is a potential candidate of biodegradable polymer for FDM processes.


Subject(s)
Cupriavidus/metabolism , Hydroxybutyrates/chemistry , Polyesters/chemistry , Molecular Structure , Molecular Weight , Plasticizers/chemistry , Rheology , Temperature
9.
Polymers (Basel) ; 12(11)2020 Oct 31.
Article in English | MEDLINE | ID: mdl-33142862

ABSTRACT

This study introduces an original concept in the development of hydrogel materials for controlled release of charged organic compounds based on semi-interpenetrating polymer networks composed by an inert gel-forming polymer component and interpenetrating linear polyelectrolyte with specific binding affinity towards the carried active compound. As it is experimentally illustrated on the prototype hydrogels prepared from agarose interpenetrated by poly(styrene sulfonate) (PSS) and alginate (ALG), respectively, the main benefit brought by this concept is represented by the ability to tune the mechanical and transport performance of the material independently via manipulating the relative content of the two structural components. A unique analytical methodology is proposed to provide complex insight into composition-structure-performance relationships in the hydrogel material combining methods of analysis on the macroscopic scale, but also in the specific microcosms of the gel network. Rheological analysis has confirmed that the complex modulus of the gels can be adjusted in a wide range by the gelling component (agarose) with negligible effect of the interpenetrating component (PSS or ALG). On the other hand, the content of PSS as low as 0.01 wt.% of the gel resulted in a more than 10-fold decrease of diffusivity of model-charged organic solute (Rhodamine 6G).

10.
Polymers (Basel) ; 12(4)2020 Apr 21.
Article in English | MEDLINE | ID: mdl-32326192

ABSTRACT

Gradient hydrogels refer to hydrogel materials with a gradual or abrupt change in one or some of their properties. They represent examples of more sophisticated gel materials in comparison to simple, native gel networks. Here, we review techniques used to prepare gradient hydrogels which have been reported in literature over the last few years. A variety of simple preparation methods are available, most of which can be relatively easily utilized in standard laboratories.

11.
Plant Methods ; 15: 83, 2019.
Article in English | MEDLINE | ID: mdl-31384288

ABSTRACT

BACKGROUND: Experimental determination of the extent and rate of transport of liquid humates supplied to plants is critical in testing physiological effects of such biostimulants which are often supplied as foliar sprays. Therefore, an original experimental method for the qualitative investigation and quantitative description of the penetration of humates through plant cuticles is proposed, tested, and evaluated. RESULTS: The proposed method involves the isolation of model plant leaf cuticles and the subsequent in vitro evaluation of cuticular humate transport. The employed novel methodology is based on a simple diffusion couple arrangement involving continuous spectrophotometric determination of the amount of penetrated humate in a hydrogel diffusion medium. Prunus laurocerasus leaf cuticles were isolated by chemical and enzymatic treatment and the rate of cuticular penetration of a commercial humate (lignohumate) was estimated over time in quantitative and qualitative terms. Different rates of lignohumate transport were determined for abaxial and adaxial leaf cuticles also in relation to the different cuticular extraction methods tested. CONCLUSIONS: The proposed methodology represents a simple and cheap experimental tool for the study on the trans-cuticular penetration of humic-based biostimulants.

12.
Polymers (Basel) ; 11(5)2019 May 27.
Article in English | MEDLINE | ID: mdl-31137862

ABSTRACT

The rheological properties of hydrogels prepared by physical interactions between oppositely charged polyelectrolyte and surfactant in micellar form were studied. Specifically, hyaluronan was employed as a negatively charged polyelectrolyte and Septonex (carbethopendecinium bromide) as a cationic surfactant. Amino-modified dextran was used as a positively charged polyelectrolyte interacting with sodium dodecylsulphate as an anionic surfactant. The effects of the preparation method, surfactant concentration, ionic strength (the concentration of NaCl background electrolyte), pH (buffers), multivalent cations, and elevated temperature on the properties were investigated. The formation of gels required an optimum ionic strength (set by the NaCl solution), ranging from 0.15-0.3 M regardless of the type of hydrogel system and surfactant concentration. The other compositional effects and the effect of temperature were dependent on the polyelectrolyte type or its molecular weight. General differences between the behaviour of hyaluronan-based and cationized dextran-based materials were attributed to differences in the chain conformations of the two biopolymers and in the accessibility of their charged groups.

13.
Molecules ; 24(8)2019 Apr 19.
Article in English | MEDLINE | ID: mdl-31010124

ABSTRACT

Humic acids are often regarded as substances with a supramolecular structure which plays an important role in Nature. Their addition into hydrogels can affect their behavior and functioning in different applications. This work is focused on the properties of widely-used hydrogel based on agarose after addition of humic acids-the protonated H-form of humic acids and humic acids with methylated carboxylic groups. Hydrogels enriched by humic acids were studied in terms of their viscoelastic and transport properties. Rotational rheometry and methods employing diffusion cells were used in order to describe the influence of humic acids on the properties and behavior of hydrogels. From the point of view of rheology the addition of humic acids mainly affected the loss modulus corresponding to the relaxation of hydrogel connected with its flow. In the case of diffusion experiments, the transport of dyes (methylene blue and rhodamine) and metal ions (copper and nickel) through the hydrogel was affected by interactions between humic acids and the diffusion probes. The time lag in the hydrogel enriched by humic acids was prolonged for copper, methylene blue and rhodamine. In contrast, the presence of humic acids in hydrogel slightly increased the mobility of nickel. The strongest influence of the methylation of humic acids on diffusion was observed for methylene blue.


Subject(s)
Humic Substances , Hydrogels/chemistry , Copper/chemistry , Methylene Blue/chemistry , Nickel/chemistry , Rheology , Rhodamines/chemistry
14.
Bull Environ Contam Toxicol ; 98(3): 373-377, 2017 Mar.
Article in English | MEDLINE | ID: mdl-27660188

ABSTRACT

Soil pollution by the presence of different contaminants (e.g. heavy metal ions or pesticides) is one of the biggest problems worldwide. The positive affinity of natural humic acids towards these contaminants might contribute to the soil and ground water protection; therefore it is necessary to study the reactivity and barrier properties of humic acids. An original reactivity-mapping tool based on diffusion techniques designed to study the reactivity and barrier properties of polyelectrolytes was developed and tested on humic acids. The results of diffusion experiments demonstrate that the electrostatic interactions between humic acids functioning as a polyelectrolyte interpenetrated in a supporting hydrogel matrix (agarose) and cationic dye (methylene blue) as a model solute have a crucial impact on the rate of diffusion processes and on the barrier properties of hydrogels. The intensity of interactions was evaluated by fundamental diffusion parameters (effective diffusion coefficients and breakthrough time). The impact of modification of humic acids was also studied by means of diffusion experiments conducted on two types of standard humic acids (Leonardite 1S104H) and humic acids with selectively methylated carboxylic groups.


Subject(s)
Diffusion , Humic Substances/analysis , Methylene Blue/analysis , Sepharose/chemistry , Soil/chemistry
15.
Chemosphere ; 138: 503-10, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26203865

ABSTRACT

Interactions of humic acids (HAs) with two cationic dyes (methylene blue and rhodamine 6G) were studied using a unique combination of diffusion and partitioning studies in HAs, containing hydrogels and batch sorption experiments. In order to investigate the involvement of carboxyl groups of HAs in these interactions, all experiments were performed for both, the original lignite HAs and HAs with selectively methylated carboxyls. The results of the diffusion experiments confirm that the interactions between the solute and humic substances have a strong impact on the rate of diffusion process. Surprisingly, the effect is almost equally approved for original and methylated HAs. On the other hand, the results of batch sorption experiments show strong improvement of the sorption capacity (methylated HAs), which is explained by changed morphology of alkylated HAs. The comparison of the results of diffusion and adsorption experiments shows that the diffusion experiments simulate the transport of solutes in natural humics containing environment more reasonably.


Subject(s)
Humic Substances , Methylene Blue/chemistry , Rhodamines/chemistry , Adsorption , Diffusion
SELECTION OF CITATIONS
SEARCH DETAIL
...