Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Viruses ; 15(10)2023 09 22.
Article in English | MEDLINE | ID: mdl-37896755

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused a global pandemic in the years 2020-2022. With a high prevalence, an easy route of transmission, and a long incubation time, SARS-CoV-2 spread quickly and affected public health and socioeconomic conditions. Several points need to be elucidated about its mechanisms of infection, in particular, its capability to evade the immune system and escape from neutralizing antibodies. Extracellular vesicles (EVs) are phospholipid bilayer-delimited particles that are involved in cell-to-cell communication; they contain biological information such as miRNAs, proteins, nucleic acids, and viral components. Abundantly released from biological fluids, their dimensions are highly variable, which are used to divide them into exosomes (40 to 150 nm), microvesicles (40 to 10,000 nm), and apoptotic bodies (100-5000 nm). EVs are involved in many physiological and pathological processes. In this article, we report the latest evidence about EVs' roles in viral infections, focusing on the dual role of exosomes in promoting and inhibiting SARS-CoV-2 infection. The involvement of mesenchymal stromal/stem cells (MSCs) and MSC-derived EVs in COVID-19 treatment, such as the use of translational exosomes as a diagnostical/therapeutic approach, is also investigated. These elucidations could be useful to better direct the discovery of future diagnostical tools and new exosome-derived COVID-19 biomarkers, which can help achieve optimal therapeutic interventions and implement future vaccine strategies.


Subject(s)
COVID-19 , Exosomes , Extracellular Vesicles , Humans , COVID-19/therapy , COVID-19/metabolism , SARS-CoV-2 , COVID-19 Drug Treatment , Extracellular Vesicles/metabolism , Exosomes/metabolism
2.
Crit Rev Oncol Hematol ; 184: 103929, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36773668

ABSTRACT

PURPOSE: To assess the prognostic impact of TP53 mutations in EGFR-mutant advanced NSCLC patients treated with TKIs. METHODS: Studies exploring the clinical outcomes of EGFR mutant/TP53 wild-type versus EGFR/TP53 co-mutant patients treated with TKIs were selected. Data were cumulated by adopting a fixed and random-effect model. RESULTS: Overall, 29 trials were eligible. The PFS analysis showed that TP53 co-mutant group has shorter PFS versus EGFR mutant/TP53 wild-type group (HR = 1.67, 95% CI 1.51-1.83, heterogeneity I2 =20%, p = 0.18). Patients affected by EGFR/TP53 co-mutant NSCLC have a higher chance of shorter OS versus EGFR mutant/TP53 wild type (HR= 1.89, 95% CI 1.67-2.14, heterogeneity I2 = 21%; p = 0.19). The subgroup analysis showed no significant difference between first-second versus third-generation TKIs in both PFS and OS (p = 0.31, p = 0.08). CONCLUSIONS: TP53 mutations represent a clinically relevant mechanism of resistance to EGFR-TKIs, regardless of their generation. A personalized therapeutical approach should be explored in dedicated clinical trials.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Prognosis , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/chemically induced , ErbB Receptors , Mutation , Protein Kinase Inhibitors/therapeutic use , Tumor Suppressor Protein p53/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...